5-Gb/s performance of integrated light source consisting of lambda /4-shifted DFB laser and EA modulator with SI InP BH structure

The fabrication process and characteristics, including 5-Gb/s transmission, of an integrated light source consisting of a lambda /4-shifted distributed feedback laser and an electroabsorption (EA) modulator are discussed. By introducing a semi-insulating (SI) InP on the butt-joint region, both the large electrical isolation resistance (>10 M Omega ) between the laser and the modulator and a high optical coupling efficiency (>80%) between them are achieved. A typical threshold current was 50-70 mA, and single-mode operation at 1.576 mu m was maintained up to 5.5-mW output power. The modulation voltage to swing between 90% transmission and 10% transmission was 6.2-12 V, depending on the modulator length in the range 1000-400 mu m. The 3-dB bandwidth is 7.7 GHz and a linewidth enhancement factor ( alpha ) of 0.9 is estimated from the sideband-to-carrier ratio of the spectra. >

[1]  Shigeyuki Akiba,et al.  Monolithic integration of InGaAsP/InP distributed feedback laser and electroabsorption modulator by vapor phase epitaxy , 1987 .

[2]  S. Akiba,et al.  Electrical and optical interactions between integrated InGaAsP/InP DFB lasers and electroabsorption modulators , 1988 .

[3]  G. Eisenstein,et al.  4-Gb/s transmission experiment over 117 km of optical fiber using a Ti:LiNbO3external modulator , 1985, Journal of Lightwave Technology.

[4]  S. Akiba,et al.  Dynamic spectral width of an InGaAsP/InP electroabsorption light modulator under high-frequency large-signal modulation , 1986 .

[5]  S. Akiba,et al.  Asymmetric λ/4-shifted InGaAsP/InP DFB lasers , 1987 .

[6]  Yuichi Matsushima,et al.  Λ/4-shifted InGaAsP/InP DFB lasers by simultaneous holographic exposure of positive and negative photoresists , 1984 .

[7]  H. Ishikawa,et al.  High-speed GaInAsP/InP buried-heterostructure optical intensity modulator with semi-insulating InP burying layers , 1987 .

[8]  Hiroshi Ishikawa,et al.  5 Gb/s transmission experiment using a monolithic electro-absorption modulator/DFB laser light source , 1989 .

[9]  Sadao Fujita,et al.  10 Gbit/s, 100 km optical fibre transmission experiment using high-speed MQW DFB-LD and back-illuminated GaInAs APD , 1989 .

[10]  S. Sugou,et al.  Epitaxial growth of highly Fe-doped semi-insulating InP layers by N2 carrier gas mixed hydride vapor phase epitaxy , 1989 .

[11]  Uziel Koren,et al.  Low‐loss InGaAs/InP multiple quantum well optical electroabsorption waveguide modulator , 1987 .

[12]  T. Wood Multiple quantum well (MQW) waveguide modulators , 1988 .

[13]  R. Alferness Waveguide Electrooptic Modulators , 1982 .

[14]  I. Yokota,et al.  Evaluation of 4-Gbit/s optical fiber transmission distance with direct and external modulation , 1988 .

[15]  Y. Yoshikuni,et al.  High-speed long-wavelength optical modulation in InGaAs/InAlAs multiple quantum wells , 1985 .

[16]  N. Edagawa,et al.  2.4 Gbit/s 100 km penalty-free conventional fibre transmission experiments using GaInAsP electroabsorption modulator , 1989 .

[17]  Shigeyuki Akiba,et al.  High-speed electroabsorption modulator with strip-loaded InGaAsP planar waveguide , 1986, Topical Meeting on Integrated and Guided-Wave Optics.

[18]  Y. Yoshikuni,et al.  Monolithic integration of InGaAs/InP DFB lasers and InGaAs/InAlAs MQW optical modulators , 1986 .

[19]  Steven K. Korotky,et al.  4Gb/s Transmission Experiment over 117km of Optical Fiber Using a Ti:LiNbO3 External Modulator , 1985 .

[20]  S. Akiba,et al.  Effect of hole pile-up at heterointerface on modulation voltage in GaInAsP electroabsorption modulators , 1989 .

[21]  S. Akiba,et al.  High-speed characteristics at high input optical power of GaInAsP electroabsorption modulators , 1988 .

[22]  K. Kasahara,et al.  Semi‐insulating current blocking property simulations for buried heterostructure laser diodes , 1988 .