Robust boundary triangulation and delaunay triangulation of arbitrary planar domains

A simple and robust boundary triangulation algorithm is proposed and, based on it, completely automatic Delaunay mesh generation procedures are developed. The algorithm is equally applicable to convex, non-convex and multiply connected planar domains. In this approach, given the nodes, the number of triangles formed is precisely known and any desired control over mesh generation is possible.

[1]  S. Sloan A fast algorithm for constructing Delaunay triangulations in the plane , 1987 .

[2]  P. Levin,et al.  On conforming Delaunay mesh generation , 1992 .

[3]  Ibrahim Zeid,et al.  Automatic quadrilateral/triangular free‐form mesh generation for planar regions , 1991 .

[4]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[5]  S. H. Lo,et al.  Automatic mesh generation and adaptation by using contours , 1991 .

[6]  N. Weatherill The integrity of geometrical boundaries in the two‐dimensional delaunay triangulation , 1990 .

[7]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[8]  W. Frey Selective refinement: A new strategy for automatic node placement in graded triangular meshes , 1987 .

[9]  S. H. Lo,et al.  Delaunay triangulation of non‐convex planar domains , 1989 .

[10]  Graham F. Carey,et al.  Mesh generation/refinement using fractal concepts and iterated function systems , 1992 .

[11]  William H. Frey,et al.  An apporach to automatic three‐dimensional finite element mesh generation , 1985 .

[12]  J. Cavendish Automatic triangulation of arbitrary planar domains for the finite element method , 1974 .

[13]  S. Lo A NEW MESH GENERATION SCHEME FOR ARBITRARY PLANAR DOMAINS , 1985 .

[14]  William H. Frey,et al.  Mesh relaxation: A new technique for improving triangulations , 1991 .

[15]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[16]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[17]  M. Rivara A grid generator based on 4‐triangles conforming mesh‐refinement algorithms , 1987 .