Line parameters including temperature dependences of air- and self-broadened line shapes of 12 C 16 O 2 : 2.06-μm region

Abstract This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

[1]  Ha Tran,et al.  Influence of line mixing on the retrievals of atmospheric CO 2 from spectra in the 1.6 and 2.1 μm regions , 2009 .

[2]  Robert R. Gamache,et al.  Predicting accurate line shape parameters for CO2 transitions , 2013 .

[3]  V. Malathy Devi,et al.  Line strengths of 12C16O2: 4550–7000 cm−1 , 2006 .

[4]  R. Ciuryło,et al.  Quadratic speed dependence of collisional broadening and shifting for atmospheric applications , 2015 .

[5]  V. Malathy Devi,et al.  Spectroscopic database of CO2 line parameters: 4300–7000 cm−1 , 2008 .

[6]  Lance E. Christensen,et al.  Tunable laser spectroscopy of CO2 near 2.05 μm: Atmospheric retrieval biases due to neglecting line-mixing , 2012 .

[7]  L. Rothman,et al.  Extension of the hitran database to non-LTE applications , 1992 .

[8]  P. Chelin,et al.  Abinitiocalculations of the spectral shapes of CO2isolated lines including non-Voigt effects and comparisons with experiments , 2013 .

[9]  William C. Swann,et al.  Pressure-induced shift and broadening of 1510–1540-nm acetylene wavelength calibration lines , 2000 .

[10]  J. Hodges,et al.  Frequency-agile, rapid scanning cavity ring-down spectroscopy (FARS-CRDS) measurements of the (30012)←(00001) near-infrared carbon dioxide band , 2015 .

[11]  C. Rinsland,et al.  Spectrum of 13C16O2 at 2.8 μm , 1982 .

[12]  F. Gibert,et al.  A complete study of CO2 line parameters around 4845 cm−1 for Lidar applications , 2008 .

[13]  N. Coluccelli,et al.  Absolute frequency spectroscopy of CO2 lines at around 2.09 μm by combined use of an Er:fiber comb and a Ho:YLF amplifier. , 2011, Optics letters.

[14]  Laurence S. Rothman,et al.  Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 μm region , 2010 .

[15]  David Crisp,et al.  The Orbiting Carbon Observatory (OCO) mission , 2004 .

[16]  R. R. Gamache,et al.  Einstein A coefficient, integrated band intensity, and population factors: application to the a^1@D , 2001 .

[17]  Keeyoon Sung,et al.  Line parameters including temperature dependences of self- and air-broadened line shapes of 12 C 16 O 2 : 1.6-μm region , 2016 .

[18]  V. Malathy Devi,et al.  Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment , 2005 .

[19]  V. Malathy Devi,et al.  Line mixing and speed dependence in CO2 at 6348 cm-1: Positions, intensities, and air-and self-broadening derived with constrained multispectrum analysis , 2007 .

[20]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part II: Global X CO 2 data characterization , 2012 .

[21]  Charles Chackerian,et al.  Collisional Line Mixing , 1992 .

[22]  Bertrand Parvitte,et al.  A complete study of the line intensities of four bands of CO2 around 1.6 and 2.0 μm: A comparison between Fourier transform and diode laser measurements , 2006 .

[23]  Hartmut Boesch,et al.  Global Characterization of CO2 Column Retrievals from Shortwave-Infrared Satellite Observations of the Orbiting Carbon Observatory-2 Mission , 2011, Remote. Sens..

[24]  S. Tashkun,et al.  CDSD-1000, the high-temperature carbon dioxide spectroscopic databank , 2003 .

[25]  S. Tashkun,et al.  A room temperature CO2 line list with ab initio computed intensities , 2016, 1601.05334.

[26]  Pierre H. Flamant,et al.  Tunable diode laser measurement of pressure-induced shift coefficients of CO2 around 2.05 μm for Lidar application , 2011 .

[27]  G. Toon,et al.  Carbon dioxide column abundances at the Wisconsin Tall Tower site , 2006 .

[28]  V. Malathy Devi,et al.  Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012←00001 and 30013←00001 bands , 2010 .

[29]  Ben M. Elliott,et al.  FT-IR spectra of 18O-, and 13C-enriched CO2 in the ν3 region: High accuracy frequency calibration and spectroscopic constants for 16O12C18O, 18O12C18O, and 16O13C16O , 2015 .

[30]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[31]  Jean-Michel Hartmann,et al.  CO2 line-mixing database and software update and its tests in the 2.1μm and 4.3μm regions , 2015 .

[32]  Hartmut Boesch,et al.  Orbiting Carbon Observatory: Inverse method and prospective error analysis , 2008 .

[33]  Justus Notholt,et al.  The Total Carbon Column Observing Network , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  L. Rothman,et al.  Direct numerical diagonalization: Wave of the future , 1992 .

[35]  V. M. Devi,et al.  Self- and air-broadened line shapes in the 2ν3 P and R branches of 12CH4 , 2015 .

[36]  J. Hodges,et al.  Absolute 12C16O2 transition frequencies at the kHz-level from 1.6 to 7.8 µm , 2013 .

[37]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[38]  V. Malathy Devi,et al.  Self-broadened widths and shifts of 12C16O2: 4750–7000 cm−1 , 2006 .

[39]  Jean-Michel Hartmann,et al.  Efficient computation of some speed-dependent isolated line profiles , 2013 .

[40]  Kendra L. Letchworth,et al.  RAPID AND ACCURATE CALCULATION OF THE VOIGT FUNCTION , 2007 .

[41]  Keeyoon Sung,et al.  Spectral line parameters including temperature dependences of self- and air-broadening in the 2←0 band of CO at 2.3 μm , 2012 .

[42]  J. Lamouroux,et al.  CDSD-296, high resolution carbon dioxide spectroscopic databank: Version for atmospheric applications , 2015 .

[43]  V. M. Devi,et al.  Absolute line intensities in CO2 bands near 4.8 mum. , 1986, Applied optics.

[44]  B. Parvitte,et al.  Self-induced pressure shift and temperature dependence measurements of CO2 at 2.05μm with a tunable diode laser spectrometer. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[45]  Charles E. Miller,et al.  NASA Orbiting Carbon Observatory: measuring the column averaged carbon dioxide mole fraction from space , 2008 .

[46]  F. Valero,et al.  Temperature dependence of self-broadened halfwidths of CO2 , 1990 .

[47]  V. Malathy Devi,et al.  Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750–7000 cm−1 , 2007 .

[48]  John H. Shaw,et al.  Band Parameters Of N20 and CO2 Determined By Whole Band Analysis , 1981, Other Conferences.

[49]  David Crisp,et al.  Precision requirements for space-based XCO2 data , 2007 .

[50]  V. M. Devi,et al.  Cryogenic absorption cells operating inside a Bruker IFS-125HR: First results for 13CH4 at 7 μm , 2010 .

[51]  Keeyoon Sung,et al.  Erratum to “Spectral line parameters including temperature dependences of self- and air-broadening in the 2←0 band of CO at 2.3 μm” [J Quant Spectrosc Radiat Transfer 2012;113:1013-33] , 2013 .

[52]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[53]  Rebecca Castano,et al.  Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission , 2012 .

[54]  V. Malathy Devi,et al.  Line positions and strengths of 16O12C18O, 18O12C18O and 17O12C18O between 2200 and 7000 cm−1 , 2007 .

[55]  A. Castrillo,et al.  The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models. , 2009, The Journal of chemical physics.

[56]  D. Robert,et al.  Short range force effects in semiclassical molecular line broadening calculations , 1979 .

[57]  V. Malathy Devi,et al.  Temperature dependences for air-broadened Lorentz half-width and pressure shift coefficients in the 30013/00001 and 30012/00001 bands of CO 2 near 1600 nm 1 , 2009 .

[58]  V. M. Devi,et al.  A multispectrum nonlinear least squares fitting technique , 1995 .

[59]  Tatsuya Yokota,et al.  Global Concentrations of CO2 and CH4 Retrieved from GOSAT: First Preliminary Results , 2009 .

[60]  V. M. Devi,et al.  A cryogenic Herriott cell vacuum-coupled to a Bruker IFS-125HR , 2014 .

[61]  Charles E. Miller,et al.  Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions , 2004 .

[62]  A. G. Maki,et al.  Absolute frequency measurements of the 2-0 band of CO at 2.3 μm; Calibration standard frequencies from high resolution color center laser spectroscopy , 1983 .

[63]  Didier Bruneau,et al.  Laser diode absorption spectroscopy for accurate CO(2) line parameters at 2 microm: consequences for space-based DIAL measurements and potential biases. , 2009, Applied optics.