Moloney murine leukemia virus glyco-gag facilitates xenotropic murine leukemia virus-related virus replication through human APOBEC3-independent mechanisms

[1]  C. Kozak,et al.  Moloney murine leukemia virus glyco-gag facilitates xenotropic murine leukemia virus-related virus replication through human APOBEC3-independent mechanisms , 2012, Retrovirology.

[2]  K. Weeks,et al.  Femtomole SHAPE reveals regulatory structures in the authentic XMRV RNA genome. , 2011, Journal of the American Chemical Society.

[3]  V. Pathak,et al.  Characterization, mapping and distribution of the two XMRV parental proviruses , 2011, Journal of Virology.

[4]  V. Pathak,et al.  Recombinant Origin of the Retrovirus XMRV , 2011, Science.

[5]  Catherine E. Welsh,et al.  Subspecific origin and haplotype diversity in the laboratory mouse , 2011, Nature Genetics.

[6]  M. Wainberg,et al.  XMRV as a Human Pathogen? , 2011, Cell Host & Microbe.

[7]  H. Fan,et al.  The Cellular Protein La Functions in Enhancement of Virus Release through Lipid Rafts Facilitated by Murine Leukemia Virus Glycosylated Gag , 2011, mBio.

[8]  B. Cullen,et al.  Human APOBEC3 proteins can inhibit xenotropic murine leukemia virus-related virus infectivity. , 2011, Virology.

[9]  C. Kozak The mouse "xenotropic" gammaretroviruses and their XPR1 receptor , 2010, Retrovirology.

[10]  K. Wollenberg,et al.  Evolution of Functional and Sequence Variants of the Mammalian XPR1 Receptor for Mouse Xenotropic Gammaretroviruses and the Human-Derived Retrovirus XMRV , 2010, Journal of Virology.

[11]  M. Sitbon,et al.  Mouse retroviruses and chronic fatigue syndrome: Does X (or P) mark the spot? , 2010, Proceedings of the National Academy of Sciences.

[12]  M. Santiago,et al.  The Glycosylated Gag Protein of a Murine Leukemia Virus Inhibits the Antiretroviral Function of APOBEC3 , 2010, Journal of Virology.

[13]  N. Fischer,et al.  Apobec 3G Efficiently Reduces Infectivity of the Human Exogenous Gammaretrovirus XMRV , 2010, PloS one.

[14]  R. Silverman,et al.  The human retrovirus XMRV in prostate cancer and chronic fatigue syndrome , 2010, Nature Reviews Urology.

[15]  M. Pizzato MLV glycosylated-Gag is an infectivity factor that rescues Nef-deficient HIV-1 , 2010, Proceedings of the National Academy of Sciences.

[16]  Narasimhan J. Venkatachari,et al.  Inhibition of Xenotropic Murine Leukemia Virus-Related Virus by APOBEC3 Proteins and Antiviral Drugs , 2010, Journal of Virology.

[17]  S. Neil,et al.  Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors , 2010, Proceedings of the National Academy of Sciences.

[18]  M. Summers,et al.  An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. , 2010, Journal of molecular biology.

[19]  A. McPherson,et al.  Murine leukemia virus glycosylated Gag (gPr80gag) facilitates interferon-sensitive virus release through lipid rafts , 2009, Proceedings of the National Academy of Sciences.

[20]  M. Neuberger,et al.  The AKV Murine Leukemia Virus Is Restricted and Hypermutated by Mouse APOBEC3 , 2009, Journal of Virology.

[21]  R. D’Aquila,et al.  Cytoplasmic APOBEC3G Restricts Incoming Vif-Positive Human Immunodeficiency Virus Type 1 and Increases Two-Long Terminal Repeat Circle Formation in Activated T-Helper-Subtype Cells , 2009, Journal of Virology.

[22]  B. Peterlin,et al.  Enhanced replication and pathogenesis of Moloney murine leukemia virus in mice defective in the murine APOBEC3 gene. , 2009, Virology.

[23]  J. Meers,et al.  Biology and evolution of the endogenous koala retrovirus. , 2008, Cellular and molecular life sciences : CMLS.

[24]  K. Strebel,et al.  HIV-1 Vif, APOBEC, and Intrinsic Immunity , 2008, Retrovirology.

[25]  J. Coffin,et al.  Interactions of Murine APOBEC3 and Human APOBEC3G with Murine Leukemia Viruses , 2008, Journal of Virology.

[26]  C. Kozak,et al.  Novel Postentry Resistance to AKV Ecotropic Mouse Gammaretroviruses in the African Pygmy Mouse, Mus minutoides , 2008, Journal of Virology.

[27]  P. Bieniasz,et al.  Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu , 2008, Nature.

[28]  J. Coffin,et al.  Role of APOBEC3 in Genetic Diversity among Endogenous Murine Leukemia Viruses , 2007, PLoS genetics.

[29]  B. Peterlin,et al.  APOBEC3 inhibits mouse mammary tumour virus replication in vivo , 2007, Nature.

[30]  A. McPherson,et al.  Mutation in the Glycosylated Gag Protein of Murine Leukemia Virus Results in Reduced In Vivo Infectivity and a Novel Defect in Viral Budding or Release , 2007, Journal of Virology.

[31]  J. Derisi,et al.  An infectious retrovirus susceptible to an IFN antiviral pathway from human prostate tumors , 2007, Proceedings of the National Academy of Sciences.

[32]  Pierre Baldi,et al.  A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions , 2006, Molecular & Cellular Proteomics.

[33]  J. Derisi,et al.  Identification of a Novel Gammaretrovirus in Prostate Tumors of Patients Homozygous for R462Q RNASEL Variant , 2006, PLoS pathogens.

[34]  B. Cullen,et al.  Human APOBEC3B is a potent inhibitor of HIV-1 infectivity and is resistant to HIV-1 Vif. , 2005, Virology.

[35]  M. Malim,et al.  Cytidine Deamination of Retroviral DNA by Diverse APOBEC Proteins , 2004, Current Biology.

[36]  Takeshi Kurosu,et al.  Human APOBEC3F Is Another Host Factor That Blocks Human Immunodeficiency Virus Type 1 Replication , 2004, Journal of Virology.

[37]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[38]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[39]  Y. Takeuchi,et al.  Molecular cloning, complete sequence, and biological characterization of a xenotropic murine leukemia virus constitutively released from the human B-lymphoblastoid cell line DG-75. , 2003, Virology.

[40]  M. Malim,et al.  Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein , 2002, Nature.

[41]  T. Miyazawa Infections of feline leukemia virus and feline immunodeficiency virus. , 2002, Frontiers in bioscience : a journal and virtual library.

[42]  C. Power Retroviral diseases of the nervous system: pathogenic host response or viral gene-mediated neurovirulence? , 2001, Trends in Neurosciences.

[43]  L. Bromham,et al.  The Nucleotide Sequence of Koala (Phascolarctos cinereus) Retrovirus: a Novel Type C Endogenous Virus Related to Gibbon Ape Leukemia Virus , 2000, Journal of Virology.

[44]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[45]  J. Coffin,et al.  Structure and Distribution of Endogenous Nonecotropic Murine Leukemia Viruses in Wild Mice , 1998, Journal of Virology.

[46]  J. Portis,et al.  The Neuroinvasiveness of a Murine Retrovirus Is Influenced by a Dileucine-Containing Sequence in the Cytoplasmic Tail of Glycosylated Gag , 1998, Journal of Virology.

[47]  J. Portis,et al.  Characterization of glycosylated Gag expressed by a neurovirulent murine leukemia virus: identification of differences in processing in vitro and in vivo , 1997, Journal of virology.

[48]  H. Fan,et al.  Leukemogenesis by Moloney murine leukemia virus: a multistep process. , 1997, Trends in microbiology.

[49]  J. Portis,et al.  The glycosylated gag protein of MuLV is a determinant of neuroinvasiveness: analysis of second site revertants of a mutant MuLV lacking expression of this protein. , 1996, Virology.

[50]  H. Fan,et al.  Recovery of Glycosylated gag Virus from Mice Infected with a Glycosylated gag-Negative Mutant of Moloney Murine Leukemia Virus. , 1994, Journal of biomedical science.

[51]  M. Sitbon,et al.  A nonstructural gag-encoded glycoprotein precursor is necessary for efficient spreading and pathogenesis of murine leukemia viruses , 1994, Journal of virology.

[52]  J. Portis,et al.  Identification of a sequence in the unique 5' open reading frame of the gene encoding glycosylated Gag which influences the incubation period of neurodegenerative disease induced by a murine retrovirus , 1994, Journal of virology.

[53]  W. Frankel,et al.  A linkage map of endogenous murine leukemia proviruses. , 1990, Genetics.

[54]  J. Darlix,et al.  CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. , 1989, Journal of molecular biology.

[55]  C. Kozak,et al.  Diverse wild mouse origins of xenotropic, mink cell focus-forming, and two types of ecotropic proviral genes , 1987, Journal of virology.

[56]  J. Coffin,et al.  The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination , 1987, Journal of virology.

[57]  H. Fan,et al.  Generation of a recombinant Moloney murine leukemia virus carrying the v-src gene of avian sarcoma virus: transformation in vitro and pathogenesis in vivo , 1985, Journal of virology.

[58]  H. Diggelmann,et al.  Murine Leukemia Virus Proteins Expressed on the Surface of Infected Cells in Culture , 1980, Journal of virology.

[59]  H. Fan,et al.  gag-Related polyproteins of Moloney murine leukemia virus: evidence for independent synthesis of glycosylated and unglycosylated forms , 1979, Journal of virology.

[60]  J. Ledbetter,et al.  Viral proteins expressed on the surface of murine leukemia cells , 1977, Journal of virology.

[61]  H. Fan,et al.  Monospecific immunoprecipitation of murine leukemia virus polyribosomes: Identification of p30 protein-specific menssenger RNA , 1976, Cell.

[62]  S. King,et al.  Mechanism of interaction between endogenous ecotropic murine leukemia viruses in (BALB/c X C57BL/6) hybrid cells. , 1988, Virology.