Quantum linear network coding as one-way quantum computation

Network coding is a technique to maximize communication rates within a network, in communication protocols for simultaneous multi-party transmission of information. Linear network codes are examples of such protocols in which the local computations performed at the nodes in the network are limited to linear transformations of their input data (represented as elements of a ring, such as the integers modulo 2). The quantum linear network coding protocols of Kobayashi et al. coherently simulate classical linear network codes, using supplemental classical communication. We demonstrate that these protocols correspond in a natural way to measurement-based quantum computations with graph states over qudits having a structure directly related to the network.

[1]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[2]  Elham Kashefi,et al.  The measurement calculus , 2004, JACM.

[3]  Elham Kashefi,et al.  Closed timelike curves in measurement-based quantum computation , 2011 .

[4]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[5]  Masahito Hayashi,et al.  Quantum Network Coding , 2006, STACS.

[6]  E. Kashefi,et al.  Generalized flow and determinism in measurement-based quantum computation , 2007, quant-ph/0702212.

[7]  P. Panangaden,et al.  Parsimonious and robust realizations of unitary maps in the one-way model , 2005 .

[8]  J. Niel de Beaudrap,et al.  A linearized stabilizer formalism for systems of finite dimension , 2011, Quantum Inf. Comput..

[9]  Ross Duncan,et al.  A graphical approach to measurement-based quantum computing , 2012, Quantum Physics and Linguistics.

[10]  D. Browne,et al.  Computational power of correlations. , 2008, Physical review letters.

[11]  Debbie W. Leung,et al.  Quantum Network Communication—The Butterfly and Beyond , 2010, IEEE Transactions on Information Theory.

[12]  Damian Markham,et al.  Information Flow in Secret Sharing Protocols , 2009, DCM.

[13]  Martin Rötteler,et al.  Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .

[14]  Martin Rötteler,et al.  Constructing quantum network coding schemes from classical nonlinear protocols , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[15]  Martin Rötteler,et al.  General Scheme for Perfect Quantum Network Coding with Free Classical Communication , 2009, ICALP.

[16]  Elham Kashefi,et al.  Quadratic Form Expansions for Unitaries , 2008, TQC.

[17]  Masahito Hayashi,et al.  Prior entanglement between senders enables perfect quantum network coding with modification , 2007, 0706.0197.

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  E. Soljanin,et al.  On Multicast in Quantum Networks , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[20]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[21]  H. Briegel,et al.  One-way Quantum Computation - a tutorial introduction , 2006, quant-ph/0603226.

[22]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[23]  Elham Kashefi,et al.  Universal Blind Quantum Computation , 2008, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Niel de Beaudrap UNITARY-CIRCUIT SEMANTICS FOR MEASUREMENT-BASED COMPUTATIONS , 2009, 0906.4261.