New V, ZF, and Abstraction

[1]  Hartry Field,et al.  Science without Numbers , 1983 .

[2]  W. V. Quine,et al.  Quantification and the empty domain , 1954, Journal of Symbolic Logic.

[3]  Alberto Coffa,et al.  The semantic tradition from Kant to Carnap , 1991 .

[4]  J. Heijenoort From Frege To Gödel , 1967 .

[5]  Heinz-Dieter Ebbinghaus Axiomatizing set theory , 1976 .

[6]  Gabriel Uzquiano Models of second-order Zermelo set theory , 1999, Bull. Symb. Log..

[7]  Colin Howson,et al.  Mathematics in Philosophy , 1992 .

[8]  George Boolos,et al.  Philosophy of mathematics: The iterative concept of set , 1984 .

[9]  S. Shapiro Foundations without Foundationalism: A Case for Second-Order Logic , 1994 .

[10]  Pierluigi Miraglia Can we intend an interpretation , 1996 .

[11]  Crispin Wright Frege's conception of numbers as objects , 1983 .

[12]  Willard Van Orman Quine Philosophy of Logic: Second Edition , 1986 .

[13]  Michèle Indira Friend Second-order logic is logic , 1997 .

[14]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[15]  A. Levy On Von Neumann's Axiom System for Set Theory , 1968 .

[16]  E. Zermelo Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .

[17]  Richard G. Heck,et al.  The development of arithmetic in Frege's Grundgesetze der arithmetik , 1993, Journal of Symbolic Logic.

[18]  Matthias Schirn The philosophy of mathematics today , 1998 .

[19]  J. Hintikka The Principles of Mathematics Revisited: Introduction , 1996 .

[20]  Richard G. Heck On The Consistency of Second-Order Contextual Definitions , 1992 .

[21]  Stewart Shapiro,et al.  “Neo-Logicist” Logic is not Epistemically Innocent , 2000 .