Rapid Vapor-Phase Deposition of High-Mobility p-Type Buffer Layers on Perovskite Photovoltaics for Efficient Semitransparent Devices

Perovskite solar cells (PSCs) with transparent electrodes can be integrated with existing solar panels in tandem configurations to increase the power conversion efficiency. A critical layer in semi-transparent PSCs is the inorganic buffer layer, which protects the PSC against damage when the transparent electrode is sputtered on top. The development of n-i-p structured semi-transparent PSCs has been hampered by the lack of suitable p-type buffer layers. In this work we develop a p-type CuOx buffer layer, which can be grown uniformly over the perovskite device without damaging the perovskite or organic charge transport layers, can be grown using industrially scalable techniques and has high hole mobility (4.3 +/- 2 cm2 V-1 s-1), high transmittance (>95%), and a suitable ionisation potential for hole extraction (5.3 +/- 0.2 eV). Semi-transparent PSCs with efficiencies up to 16.7% are achieved using the CuOx buffer layer. Our work demonstrates a new approach to integrate PSCs into tandem configurations, as well as enable the development of other devices that need high quality p-type layers.

[1]  Y. Qiu,et al.  Application in Perovskite Solar Cells , 2021, Materials and Interfaces for Clean Energy.

[2]  Seong Sik Shin,et al.  Transparent Electrodes Consisting of a Surface‐Treated Buffer Layer Based on Tungsten Oxide for Semitransparent Perovskite Solar Cells and Four‐Terminal Tandem Applications , 2020 .

[3]  Dong Hoe Kim,et al.  Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites , 2020, Science.

[4]  Zhengshan J. Yu,et al.  Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems , 2020, Science.

[5]  K. Catchpole,et al.  High Efficiency Perovskite‐Silicon Tandem Solar Cells: Effect of Surface Coating versus Bulk Incorporation of 2D Perovskite , 2020, Advanced Energy Materials.

[6]  Philip Schulz,et al.  Strong performance enhancement in lead-halide perovskite solar cells through rapid, atmospheric deposition of n-type buffer layer oxides , 2019, Nano Energy.

[7]  E. Reisner,et al.  Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems , 2019, Nature Materials.

[8]  V. Zardetto,et al.  Plasma-assisted atomic layer deposition of nickel oxide as hole transport layer for hybrid perovskite solar cells , 2019, Journal of Materials Chemistry C.

[9]  K. Stevenson,et al.  A new polytriarylamine derivative for dopant-free high-efficiency perovskite solar cells , 2019, Sustainable Energy & Fuels.

[10]  A. Aberle,et al.  Highly Efficient Semi-Transparent Perovskite Solar Cells for Four Terminal Perovskite-Silicon Tandems. , 2019, ACS applied materials & interfaces.

[11]  M. Ritala,et al.  Atomic Layer Deposition of Photoconductive Cu2O Thin Films , 2019, ACS omega.

[12]  Rebecca A. Belisle,et al.  Atomic layer deposition of vanadium oxide to reduce parasitic absorption and improve stability in n–i–p perovskite solar cells for tandems , 2019, Sustainable Energy & Fuels.

[13]  T. Watson,et al.  Graphite-protected CsPbBr3 perovskite photoanodes functionalised with water oxidation catalyst for oxygen evolution in water , 2019, Nature Communications.

[14]  Dong Hoe Kim,et al.  Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells , 2019, Science.

[15]  R. Friend,et al.  Identifying and Reducing Interfacial Losses to Enhance Color-Pure Electroluminescence in Blue-Emitting Perovskite Nanoplatelet Light-Emitting Diodes , 2019, ACS energy letters.

[16]  S. Xiao,et al.  All-optical control of lead halide perovskite microlasers , 2019, Nature Communications.

[17]  J. Poortmans,et al.  Minimizing Voltage Loss in Wide-Bandgap Perovskites for Tandem Solar Cells , 2018, ACS Energy Letters.

[18]  B. Rech,et al.  Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield , 2018 .

[19]  A. Aberle,et al.  monoPoly™ cells: Large-area crystalline silicon solar cells with fire-through screen printed contact to doped polysilicon surfaces , 2018, Solar Energy Materials and Solar Cells.

[20]  R. Friend,et al.  In Situ Atmospheric Deposition of Ultrasmooth Nickel Oxide for Efficient Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[21]  S. Chua,et al.  Small-area p-type PERC Silicon Solar Cells for Tandem Applications , 2018 .

[22]  J. Posada,et al.  Highly efficient MoOx-free semitransparent perovskite cell for 4 T tandem application improving the efficiency of commercially-available Al-BSF silicon , 2018, Scientific Reports.

[23]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[24]  Zhengshan J. Yu,et al.  Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite–Silicon Tandem Solar Cells , 2018, ACS Energy Letters.

[25]  Tomas Leijtens,et al.  Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors , 2018, Nature Energy.

[26]  X. Zhang,et al.  Single-crystalline layered metal-halide perovskite nanowires for ultrasensitive photodetectors , 2018, Nature Electronics.

[27]  S. Bent,et al.  Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics , 2018, Advanced Energy Materials.

[28]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[29]  Peter Chen,et al.  Cu/Cu2O nanocomposite films as a p-type modified layer for efficient perovskite solar cells , 2018, Scientific reports.

[30]  J. N. Sarma,et al.  Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase , 2018 .

[31]  Jonathan P. Mailoa,et al.  Developing a Robust Recombination Contact to Realize Monolithic Perovskite Tandems With Industrially Common p-Type Silicon Solar Cells , 2018, IEEE Journal of Photovoltaics.

[32]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[33]  Xudong Xiao,et al.  Mechanically-stacked perovskite/CIGS tandem solar cells with efficiency of 23.9% and reduced oxygen sensitivity , 2018 .

[34]  A. Galeckas,et al.  Improving carrier transport in Cu2O thin films by rapid thermal annealing , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[35]  M. Green,et al.  Balancing electrical and optical losses for efficient Si-perovskite 4-terminal solar cells with solution processed percolation electrodes. , 2018 .

[36]  Kai Zhu,et al.  Four-Terminal All-Perovskite Tandem Solar Cells Achieving Power Conversion Efficiencies Exceeding 23% , 2018 .

[37]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[38]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[39]  L. Korte,et al.  Roadmap and roadblocks for the band gap tunability of metal halide perovskites , 2017 .

[40]  S. Stranks Nonradiative Losses in Metal Halide Perovskites , 2017 .

[41]  Jinsong Huang,et al.  Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging , 2017, Nature Photonics.

[42]  F. Jaramillo,et al.  Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[43]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[44]  Marcus L. Böhm,et al.  Rapid open-air deposition of uniform, nanoscale, functional coatings on nanorod arrays. , 2017, Nanoscale horizons.

[45]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[46]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[47]  M. S. Miller,et al.  Nanomanufacturing: High-Throughput, Cost-Effective Deposition of Atomic Scale Thin Films via Atmospheric Pressure Spatial Atomic Layer Deposition , 2016 .

[48]  S. Kazim,et al.  Lochtransportmaterialien für Perowskit‐Solarzellen , 2016 .

[49]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[50]  Zhengshan J. Yu,et al.  Efficient Semitransparent Perovskite Solar Cells for 23.0%‐Efficiency Perovskite/Silicon Four‐Terminal Tandem Cells , 2016 .

[51]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[52]  J. Teuscher,et al.  Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[53]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[54]  C. Ballif,et al.  Parasitic Absorption Reduction in Metal Oxide-Based Transparent Electrodes: Application in Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[55]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[56]  E. Alarousu,et al.  Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. , 2016, Nanoscale.

[57]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[58]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[59]  Soo‐Hyun Kim,et al.  Highly-conformal p-type copper(I) oxide (Cu2O) thin films by atomic layer deposition using a fluorine-free amino-alkoxide precursor , 2015 .

[60]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[61]  K. Musselman,et al.  Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition. , 2015, ACS applied materials & interfaces.

[62]  Tonio Buonassisi,et al.  Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells , 2015 .

[63]  J. Pierson,et al.  Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing , 2014 .

[64]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[65]  Aiping Chen,et al.  Growth of ∼5 cm2V−1s−1 mobility, p-type Copper(I) oxide (Cu2O) films by fast atmospheric atomic layer deposition (AALD) at 225°C and below , 2012 .

[66]  Liu Wei,et al.  Photoelectric properties of ITO thin films deposited by DC magnetron sputtering , 2011 .

[67]  Hideo Hosono,et al.  Epitaxial growth of high mobility Cu2O thin films and application to p-channel thin film transistor , 2008 .

[68]  M. F. Al-Kuhaili,et al.  Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O) , 2008 .

[69]  H. Gnaser Energy and Angular Distributions of Sputtered Species , 2007 .

[70]  Hideo Hosono,et al.  P-type electrical conduction in transparent thin films of CuAlO2 , 1997, Nature.

[71]  W. D. Westwood,et al.  Calculation of deposition rates in diode sputtering systems , 1978 .

[72]  A. Revcolevschi,et al.  Growth and microstructural control of single crystal cuprous oxide Cu2O , 1974 .

[73]  E. W. McDaniel,et al.  Collision phenomena in ionized gases , 1964 .

[74]  S. Chapman,et al.  An introduction to the kinetic theory of gases , 1941 .