Experiments and nonlinear homogenization sustaining mean-field theories for refractory mortarless masonry: The classical secant procedure and its improved variants

Abstract In order to support the optimization of mortarless brick linings of steel producing furnaces it is proposed in this paper to investigate only the compressibility of dry refractory joints. To this end, optical measurements based on the Digital Image Correlation method were carried out during compression of Magnesia-Carbon brick samples with dry joints. The second main objective is to assess the accuracy of the secant linearization schemes (the classical secant procedure and its modified extension) to reproduce the reference local and global behaviour of refractory mortarless linings accounting for the identified inelastic convex power-law behaviour of the Magnesia-Carbon dry joint. The reference nonlinear solution is obtained by means of finite elements method. Under normal compressive loading, unlike for usual (concave) power-law viscoplastic composites for which the secant schemes are known to provide too stiff results, it was found that the modified secant scheme leads to good overall predictions. The classical secant procedure underestimates the reference local and overall behaviour. To improve the latter result, an empirical improved secant formulation was proposed and implemented. It leads to better estimates at local and global levels.

[1]  André Zaoui,et al.  An extension of the self-consistent scheme to plastically-flowing polycrystals , 1978 .

[2]  M. Bornert,et al.  Chapitre 2, Propriétés non linéaires des composites : approches par les potentiels , 2001 .

[3]  P Vacher,et al.  Bidimensional strain measurement using digital images , 1999 .

[4]  W. F. Ranson,et al.  Determination of displacements using an improved digital correlation method , 1983, Image Vis. Comput..

[5]  A. Zaoui,et al.  Objective evaluation of linearization procedures in nonlinear homogenization: A methodology and some implications on the accuracy of micromechanical schemes , 2007 .

[6]  Said Ahzi,et al.  On the self-consistent modeling of elastic-plastic behavior of polycrystals , 1997 .

[7]  Michel Bornert,et al.  An affine formulation for the prediction of the effective properties of nonlinear composites and polycrystals , 2000 .

[8]  P. Suquet SECTION 10.3 – Nonlinear Composites: Secant Methods and Variational Bounds , 2001 .

[9]  Salvatore Di Pasquale New trends in the analysis of masonry structures , 1992 .

[10]  Paulo B. Lourenço,et al.  CONTINUUM MODEL FOR MASONRY: PARAMETER ESTIMATION AND VALIDATION , 1998 .

[11]  M. Bornert,et al.  Evaluation précise des procédures de linéarisation en homogénéisation non linéaire , 2005 .

[12]  Paulo B. Lourenço,et al.  Finite element modelling of deformation characteristics of historical stone masonry shear walls , 2009 .

[13]  J. Chaboche,et al.  Sur les approximations « isotrope » et « anisotrope » de l'opérateur tangent pour les méthodes tangentes incrémentale et affine , 2003 .

[14]  P. Suquet Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda's nonlinear variational procedure , 1995 .

[15]  Frédéric Lebon,et al.  Asymptotic modeling of quasi-brittle interfaces , 2009 .

[16]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[17]  Mohd Saleh Jaafar,et al.  Nonlinear finite element analysis of grouted and ungrouted hollow interlocking mortarless block masonry system , 2008 .

[18]  P. Lourenço Computational strategies for masonry structures : Proefschrift , 1996 .

[19]  Mohd Saleh Jaafar,et al.  Finite element analysis of interlocking mortarless hollow block masonry prism , 2008 .

[20]  Eric Blond,et al.  Latest Evolution in Blast Furnace Hearth thermo-Mechanical Stress Modelling , 2011 .

[21]  Eric Blond,et al.  Mechanical homogenisation of masonry wall without mortar , 2009 .

[22]  Giuseppe Giambanco,et al.  A cohesive interface model for the structural mechanics of block masonry , 1997 .

[23]  J. Hutchinson,et al.  Bounds and self-consistent estimates for creep of polycrystalline materials , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[24]  Sonia Marfia,et al.  Numerical Procedure for Elasto-Plastic No-Tension Model , 2005 .

[25]  Frédéric Lebon,et al.  Identification of the representative crack length evolution in a multi-level interface model for quasi-brittle masonry , 2010 .

[26]  Giuseppe Giambanco,et al.  Numerical analysis of masonry structures via interface models , 2001 .

[27]  P. Lourenço,et al.  Multisurface Interface Model for Analysis of Masonry Structures , 1997 .

[28]  Pierre Pegon,et al.  Numerical modelling of stone-block monumental structures , 2001 .

[29]  A. Molinari,et al.  Tuning a self consistent viscoplastic model by finite element results—I. Modeling , 1994 .

[30]  Modelling of joint effects on refractory lining behaviour , 2004 .

[31]  S. Allaoui,et al.  Compressive behaviour of dry joints in refractory ceramic masonry , 2012 .