Impact of time and space evolution of ion tracks in nonvolatile memory cells approaching nanoscale

Swift heavy ions impacting on matter lose energy through the creation of dense tracks of charges. The study of the space and time evolution of energy exchange allows understanding the single event effects behavior in advanced microelectronic devices. In particular, the shrinking of minimum feature size of most advanced memory devices makes them very interesting test vehicles to study these effects since the device and the track dimensions are comparable; hence, measured effects are directly correlated with the time and space evolution of the energy release. In this work we are studying the time and space evolution of ion tracks by using advanced non volatile memories and Monte Carlo simulations. Experimental results are very well explained by the theoretical calculations.

[1]  J. Barak,et al.  Electron and Ion Tracks in Silicon: Spatial and Temporal Evolution , 2008, IEEE Transactions on Nuclear Science.

[2]  peixiong zhao,et al.  Atomic Displacement Effects in Single-Event Gate Rupture , 2008, IEEE Transactions on Nuclear Science.

[3]  R. Harboe-Sorensen,et al.  Key Contributions to the Cross Section of NAND Flash Memories Irradiated With Heavy Ions , 2008, IEEE Transactions on Nuclear Science.

[4]  P. Roche,et al.  Heavy Ion Testing and 3-D Simulations of Multiple Cell Upset in 65 nm Standard SRAMs , 2008, IEEE Transactions on Nuclear Science.

[5]  M. Beuve,et al.  Sensitivity of ion-induced sputtering to the radial distribution of energy transfers : A molecular dynamics study , 2008 .

[6]  M. N. Mazziotta,et al.  Electron–hole pair creation energy and Fano factor temperature dependence in silicon , 2008 .

[7]  J. Barak,et al.  Ion Track Structure and Dynamics in SiO $_{2}$ , 2007, IEEE Transactions on Nuclear Science.

[8]  R. Harboe-Sorensen,et al.  Angular Dependence of Heavy Ion Effects in Floating Gate Memory Arrays , 2007, IEEE Transactions on Nuclear Science.

[9]  S. Gerardin,et al.  Effectiveness of TMR-based techniques to mitigate alpha-induced SEU accumulation in commercial SRAM-based FPGAs , 2007, 2007 9th European Conference on Radiation and Its Effects on Components and Systems.

[10]  W. J. Weber,et al.  Monte Carlo method for simulating γ-ray interaction with materials: A case study on Si , 2007 .

[11]  B. G. Lowe,et al.  A measurement of the electron–hole pair creation energy and the Fano factor in silicon for 5.9 keV X-rays and their temperature dependence in the range 80–270 K , 2007 .

[12]  A. Visconti,et al.  Variability in FG Memories Performance After Irradiation , 2006, IEEE Transactions on Nuclear Science.

[13]  C.K. Kouba,et al.  Single-Event Upset and Scaling Trends in New Generation of the Commercial SOI PowerPC Microprocessors , 2006, IEEE Transactions on Nuclear Science.

[14]  Alessandro Paccagnella,et al.  Subpicosecond conduction through thin SiO2 layers triggered by heavy ions , 2006 .

[15]  O. Flament,et al.  Monte-Carlo simulations of ion track in silicon and influence of its spatial distribution on single event effects , 2006 .

[16]  P.E. Dodd,et al.  Physics-based simulation of single-event effects , 2005, IEEE Transactions on Device and Materials Reliability.

[17]  J. Barak,et al.  Straggling and extreme cases in the energy deposition by ions in submicron silicon volumes , 2005, IEEE Transactions on Nuclear Science.

[18]  A. Visconti,et al.  Radiation induced leakage current in floating gate memory cells , 2005, IEEE Transactions on Nuclear Science.

[19]  A. Candelori,et al.  Effect of different total ionizing dose sources on charge loss from programmed floating gate cells , 2005, IEEE Transactions on Nuclear Science.

[20]  J. Barak,et al.  Charge Yield and Related Phenomena Induced by Ionizing Radiation in SiO2 Layers , 2005, 2005 8th European Conference on Radiation and Its Effects on Components and Systems.

[21]  Dimitris Emfietzoglou,et al.  Ion and electron track-structure and its effects in silicon: model and calculations , 2005 .

[22]  A. Visconti,et al.  A model for TID effects on floating Gate Memory cells , 2004, IEEE Transactions on Nuclear Science.

[23]  J. Barak,et al.  Spatial distribution of electron-hole pairs induced by electrons and protons in SiO/sub 2/ , 2004, IEEE Transactions on Nuclear Science.

[24]  K. Czerski,et al.  Femtosecond dynamics – snapshots of the early ion-track evolution , 2004 .

[25]  Alessandro Paccagnella,et al.  Ionizing radiation effects on floating gates , 2004 .

[26]  A. Candelori,et al.  Data retention after heavy ion exposure of floating gate memories: analysis and simulation , 2003 .

[27]  T. Oldham,et al.  Total ionizing dose effects in MOS oxides and devices , 2003 .

[28]  J. Barak,et al.  Ion-track structure and its effects in small size volumes of silicon , 2002 .

[29]  H. Rothard,et al.  Monte Carlo simulation of electron emission induced by swift highly charged ions: beyond the linear response approximation , 2002 .

[30]  Farokh Irom,et al.  Single-event transients in high-speed comparators , 2002 .

[31]  R. E. Johnson,et al.  Coulomb explosion and thermal spikes. , 2001, Physical review letters.

[32]  Ronald D. Schrimpf,et al.  Proton-induced defect generation at the Si-SiO/sub 2/ interface , 2001 .

[33]  Alessandro Paccagnella,et al.  Radiation effects on floating-gate memory cells , 2001 .

[34]  Sumio Matsuda,et al.  Analysis of single-ion multiple-bit upset in high-density DRAMs , 2000 .

[35]  Allan H. Johnston,et al.  Radiation effects on advanced flash memories , 1999 .

[36]  Carla Golla,et al.  Flash Memories , 1999 .

[37]  G. L. Hash,et al.  Impact of ion energy on single-event upset , 1998 .

[38]  Larry D. Edmonds,et al.  Electric currents through ion tracks in silicon devices , 1998 .

[39]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[40]  G. C. Messenger,et al.  Single Event Phenomena , 1997 .

[41]  Robert Ecoffet,et al.  SEE results using high energy ions , 1995 .

[42]  B. Gervais,et al.  Simulation of the primary stage of the interaction of swift heavy ions with condensed matter , 1994 .

[43]  M. Hervieu,et al.  Swift, Heavy Ions in Insulating and Conducting Oxides: Tracks and Physical Properties , 1994 .

[44]  Meftah,et al.  Track formation in SiO2 quartz and the thermal-spike mechanism. , 1994, Physical review. B, Condensed matter.

[45]  O. Fageeha,et al.  Distribution of radial energy deposition around the track of energetic charged particles in silicon , 1994 .

[46]  R. Averback,et al.  Effect of viscous flow on ion damage near solid surfaces. , 1994, Physical review letters.

[47]  L. D. Edmonds,et al.  A simple estimate of funneling-assisted charge collection , 1991 .

[48]  A. Akkerman,et al.  Radial Energy Transfer Density Distribution around the Fast Ion Tracks in Silicon and Germanium , 1990 .

[49]  T. A. Dellin,et al.  Radiation response of floating gate EEPROM memory cells , 1989 .

[50]  T. P. Ma,et al.  Ionizing radiation effects in MOS devices and circuits , 1989 .

[51]  A. B. Campbell,et al.  Charge collection in silicon for ions of different energy but same linear energy transfer (LET) , 1988 .

[52]  H. E. Boesch,et al.  Reversibility of trapped hole annealing , 1988 .

[53]  N. Ghoniem,et al.  Monte Carlo Simulation of Coupled Ion‐Electron Transport in Semiconductors , 1987 .

[54]  P. S. Winokur,et al.  The Role of Hydrogen in Radiation-Induced Defect Formation in Polysilicon Gate MOS Devices , 1987, IEEE Transactions on Nuclear Science.

[55]  H. E. Boesch,et al.  The Relationship between 60Co and 10-keV X-Ray Damage in MOS Devices , 1986, IEEE Transactions on Nuclear Science.

[56]  A. B. Campbell,et al.  Charge Transport by the Ion Shunt Effect , 1986, IEEE Transactions on Nuclear Science.

[57]  Robert Katz,et al.  The radial distribution of dose around the path of a heavy ion in liquid water , 1986 .

[58]  T. R. Oldham,et al.  Recombination along the tracks of heavy charged particles in SiO2 films , 1985 .

[59]  Werner Brandt,et al.  Effective stopping-power charges of swift ions in condensed matter , 1982 .

[60]  W. Lanford,et al.  Stopping power and effective charge of heavy ions in solids , 1982 .

[61]  Ellen J. Yoffa,et al.  Dynamics of dense laser-induced plasmas , 1980 .

[62]  James E. Turner,et al.  Heavy-Ion Track Structure in Silicon , 1979, IEEE Transactions on Nuclear Science.

[63]  F. B. McLean,et al.  Electron-hole pair-creation energy in SiO2 , 1975 .

[64]  B. L. Gregory,et al.  Latch-Up in CMOS Integrated Circuits , 1973 .

[65]  R. Katz,et al.  Particle Tracks in Emulsion , 1969 .

[66]  Robert Katz,et al.  Energy Deposition by Electron Beams and δ Rays , 1968 .

[67]  P. B. Price,et al.  Ion Explosion Spike Mechanism for Formation of Charged-Particle Tracks in Solids , 1965 .

[68]  Herman Yagoda,et al.  Nuclear Research Emulsions , 1964 .

[69]  H. Bradt,et al.  Investigation of the Primary Cosmic Radiation with Nuclear Photographic Emulsions , 1948 .

[70]  E. Teller,et al.  On the Energy Loss of Heavy Ions , 1941 .

[71]  H. Bethe Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie , 1930 .

[72]  N. Mott The Scattering of Fast Electrons by Atomic Nuclei , 1929 .