Multi-mode resource availability cost problem with recruitment and release dates for resources

Abstract This paper investigates the multi-mode resource availability cost problem with recruitment and release dates for resources. This problem is a more realistic model and extended case of the resource availability cost problem. The project contains activities interrelated by finish–start precedence relations with zero time lags, which require a set of renewable resources. First, a mixed integer programming formulation is proposed for the problem. Then, simulated annealing (SA) algorithm is proposed to obtain a satisfying solution for this NP-hard problem. The effectiveness of the proposed algorithm is demonstrated through comprehensive experimentation based on 300 test problems. The results are analyzed and discussed.

[1]  Arno Sprecher,et al.  An exact algorithm for project scheduling with multiple modes , 1997 .

[2]  Vinícius Amaral Armentano,et al.  Scatter search for project scheduling with resource availability cost , 2006, Eur. J. Oper. Res..

[3]  Heng Li,et al.  Multimode Project Scheduling Based on Particle Swarm Optimization , 2006, Comput. Aided Civ. Infrastructure Eng..

[4]  Chen Fang,et al.  An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem , 2012, Comput. Oper. Res..

[5]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[6]  Analía Amandi,et al.  Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem , 2013, Expert Syst. Appl..

[7]  Anurag Agarwal,et al.  A Neurogenetic approach for the resource-constrained project scheduling problem , 2011, Comput. Oper. Res..

[8]  Reza Zamani,et al.  A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem , 2013, Eur. J. Oper. Res..

[9]  Hong Zhang,et al.  Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints , 2013 .

[10]  Grzegorz Waligóra,et al.  Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models , 2005, Eur. J. Oper. Res..

[11]  Yu Xu,et al.  Simulated annealing and tabu search for multi-mode project payment scheduling , 2009, Eur. J. Oper. Res..

[12]  Oumar Koné New approaches for solving the resource-constrained project scheduling problem , 2013, 4OR.

[13]  Behrouz Afshar-Nadjafi,et al.  Project scheduling with limited resources using an efficient differential evolution algorithm , 2015 .

[14]  Francisco Ballestín,et al.  A double genetic algorithm for the MRCPSP/max , 2011, Comput. Oper. Res..

[15]  Rolf H. Möhring,et al.  Minimizing Costs of Resource Requirements in Project Networks Subject to a Fixed Completion Time , 1984, Oper. Res..

[16]  Shahram Shadrokh,et al.  Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm , 2008, Appl. Math. Comput..

[17]  Erik Demeulemeester,et al.  Minimizing resource availability costs in time-limited project networks , 1995 .

[18]  Shahram Shadrokh,et al.  Bi-objective resource-constrained project scheduling with robustness and makespan criteria , 2006, Appl. Math. Comput..

[19]  Federico Barber,et al.  An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes , 2009 .

[20]  K. Bouleimen,et al.  A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version , 2003, Eur. J. Oper. Res..

[21]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[22]  Christos D. Tarantilis,et al.  Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm , 2012, Expert Syst. Appl..

[23]  Jairo R. Montoya-Torres,et al.  Project scheduling with limited resources using a genetic algorithm , 2010 .

[24]  Rainer Kolisch,et al.  Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem , 2000, Eur. J. Oper. Res..

[25]  Shahram Shadrokh,et al.  A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty , 2007, Eur. J. Oper. Res..

[26]  Mohammad Ranjbar,et al.  A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling , 2009, Eur. J. Oper. Res..

[27]  Behrouz Afshar-Nadjafi,et al.  A genetic algorithm for mode identity and the resource constrained project scheduling problem , 2012 .

[28]  Mohammad Ranjbar An Optimal NPV Project Scheduling with Fixed Work Content and Payment on Milestones , 2011 .

[29]  Bassem Jarboui,et al.  A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems , 2008, Appl. Math. Comput..

[30]  Patrick De Causmaecker,et al.  An automatic algorithm selection approach for the multi-mode resource-constrained project scheduling problem , 2014, Eur. J. Oper. Res..

[31]  Jan Karel Lenstra,et al.  Scheduling subject to resource constraints: classification and complexity , 1983, Discret. Appl. Math..

[32]  Sönke Hartmann,et al.  A survey of variants and extensions of the resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[33]  Sávio B. Rodrigues,et al.  An exact algorithm for minimizing resource availability costs in project scheduling , 2010, Eur. J. Oper. Res..

[34]  Behrouz Afshar-Nadjafi,et al.  Using meta-heuristics for project scheduling under mode identity constraints , 2013, Appl. Soft Comput..

[35]  Ehsan Eshtehardian,et al.  Multi-mode resource-constrained discrete time–cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm , 2013 .

[36]  R. Kolisch,et al.  Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis , 1999 .

[37]  Grzegorz Waligóra,et al.  Simulated Annealing for Multi-Mode Resource-Constrained Project Scheduling , 2001, Ann. Oper. Res..

[38]  Mario Vanhoucke,et al.  An artificial immune system algorithm for the resource availability cost problem , 2011, Flexible Services and Manufacturing Journal.

[39]  Amir Abbas Najafi,et al.  A multi-mode resource-constrained discrete time–cost tradeoff problem solving using an adjusted fuzzy dominance genetic algorithm , 2013 .

[40]  Alf Kimms,et al.  Optimization guided lower and upper bounds for the resource investment problem , 2001, J. Oper. Res. Soc..

[41]  James H. Patterson,et al.  ProGen/pix - An instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions , 2000, Eur. J. Oper. Res..

[42]  Mario Vanhoucke,et al.  Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers , 2011, Eur. J. Oper. Res..