Catenation of carbon in LaC2 predicted under high pressure.

Carbon has the capability of forming various bonding states that affect the structures and properties of transition metal carbides. In this work, structural search was performed to explore the structural diversity of LaC2 at pressures of 0.0-30.0 GPa. Five stable structures of LaC2 reveal a variety of carbon structural units ranging from a dimer to bent C3, zigzag C4 and armchair polymer chains. A series of pressure-induced structural transformations are predicted, I4/mmm (i.e. experimental α phase) →C2/c→Pnma→Pmma, which involve the catenation of carbon from a dimer to zigzag C4 units and further to armchair polymer chains. The bent C3 unit appears in a novel Immm structure. This structure is the theoretical ground state of LaC2 under ambient conditions, but is kinetically inaccessible from the experimental α phase. LaC2 becomes thermodynamically metastable relative to La2C3 + diamond above 17.1 GPa, and eventually decomposes into constituent elements above 35.6 GPa. The presented results indicate that catenation of carbon can be realized even in simple inorganic compounds under nonambient conditions.

[1]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[2]  Jesse S. Smith,et al.  Investigation of exotic stable calcium carbides using theory and experiment , 2015, Nature Communications.

[3]  Yanchao Wang,et al.  Pressure stabilization of long-missing bare C6 hexagonal rings in binary sesquicarbides , 2014 .

[4]  G. Cody,et al.  Synthesis of β-Mg(2)C(3): a monoclinic high-pressure polymorph of magnesium sesquicarbide. , 2014, Inorganic chemistry.

[5]  B. Ouladdiaf,et al.  Structure and bonding of superconducting LaC2 , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  H. Mao,et al.  Pressure-induced superconductivity in CaC2 , 2013, Proceedings of the National Academy of Sciences.

[7]  Yanming Ma,et al.  Global structural optimization of tungsten borides. , 2013, Physical review letters.

[8]  Hui Wang,et al.  Predicted lithium-boron compounds under high pressure. , 2012, Journal of the American Chemical Society.

[9]  Li Zhu,et al.  CALYPSO: A method for crystal structure prediction , 2012, Comput. Phys. Commun..

[10]  T. Yagi,et al.  High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure , 2012 .

[11]  Yanchao Wang,et al.  Spiral chain O4 form of dense oxygen , 2011, Proceedings of the National Academy of Sciences.

[12]  Hui Wang,et al.  Substitutional alloy of Bi and Te at high pressure. , 2011, Physical review letters.

[13]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[14]  Yanming Ma,et al.  Predicted novel high-pressure phases of lithium. , 2011, Physical review letters.

[15]  Jian Lv,et al.  Crystal structure prediction via particle-swarm optimization , 2010, 1008.3601.

[16]  C. Franchini,et al.  Polymeric forms of carbon in dense lithium carbide , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[18]  J. Andrés,et al.  An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity SN2 reactions , 2008 .

[19]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[20]  F. Kraus,et al.  Chemical bond in the cyclic anions P6 4- and As6 4-: synthesis, crystal structure, and electron localization function of {Rb[18]crown-6)}2-Rb2As6.6 NH3. , 2005, Angewandte Chemie.

[21]  K. Syassen,et al.  Structural properties of the sesquicarbide superconductor La2C3 at high pressure , 2005, cond-mat/0503597.

[22]  Jingguang G. Chen,et al.  Surface chemistry of transition metal carbides. , 2005, Chemical reviews.

[23]  B. Silvi The synaptic order: a key concept to understand multicenter bonding , 2002 .

[24]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[25]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[26]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[27]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[28]  P. Karen,et al.  Crystal structure of magnesium sesquicarbide , 1992 .

[29]  Axel D. Becke,et al.  A Simple Measure of Electron Localization in Atomic and Molecular-Systems , 1990 .

[30]  R. W. Green,et al.  Superconductivity in Some Compounds of La, Lu, Sc, and Y , 1969 .

[31]  W. L. Mcmillan TRANSITION TEMPERATURE OF STRONG-COUPLED SUPERCONDUCTORS. , 1968 .

[32]  G. Piermarini,et al.  Allotropy in Some Rare-Earth Metals at High Pressures , 1964, Science.

[33]  M. Atoji Neutron Diffraction Studies of CaC2, YC2, LaC2, CeC2, TbC2, YbC2, LuC2, and UC2 , 1961 .

[34]  K. Gschneidner,et al.  The Structures of Lanthanum Dicarbide and Sesquicarbide by X-Ray and Neutron Diffraction , 1958 .

[35]  M. Straumanis,et al.  Precision Determination of Lattice Parameter, Coefficient of Thermal Expansion and Atomic Weight of Carbon in Diamond1 , 1951 .