Algorithmic Correspondence for Hybrid Logic with Binder

In the present paper, we develop the algorithmic correspondence theory for hybrid logic with binder $\mathcal {H}(@, \downarrow )$. We define the class of Sahlqvist inequalities for $\mathcal {H}(@, \downarrow )$, and each inequality of which is shown to have a first-order frame correspondent effectively computable by an algorithm $\textsf {ALBA}^{\downarrow }$.

[1]  Willem Conradie,et al.  Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..

[2]  Valentin Goranko,et al.  Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..

[3]  Willem Conradie,et al.  Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.

[4]  Willem Conradie,et al.  Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..

[5]  maarten marx,et al.  Sahlqvist theory and transfer results for hybrid logics , 2004 .

[6]  Willem Conradie,et al.  Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.

[7]  B. D. ten Cate,et al.  Sahlqvist theory for hybrid logic , 2004 .

[8]  Willem Conradie,et al.  Sahlqvist via Translation , 2016, Log. Methods Comput. Sci..

[9]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[10]  Maarten Marx,et al.  Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.

[11]  Willem Conradie,et al.  Completeness and Correspondence in Hybrid Logic via an Extension of SQEMA , 2009, M4M.

[12]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[13]  Ian M. Hodkinson,et al.  Axiomatizing hybrid logic using modal logic , 2010, J. Appl. Log..

[14]  Valentin Goranko,et al.  Modal logic with names , 1993, J. Philos. Log..

[15]  Alessandra Palmigiano,et al.  Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..

[16]  J.F.A.K. van Benthem,et al.  Modal logic and classical logic , 1983 .

[17]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[18]  Ian M. Hodkinson,et al.  Hybrid Formulas and Elementarily Generated Modal Logics , 2006, Notre Dame J. Formal Log..

[19]  Valentin Goranko,et al.  Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..

[20]  Zhiguang Zhao Sahlqvist Correspondence Theory for Sabotage Modal Logic , 2020, ArXiv.