暂无分享,去创建一个
[1] Willem Conradie,et al. Algorithmic correspondence and canonicity for distributive modal logic , 2012, Ann. Pure Appl. Log..
[2] Valentin Goranko,et al. Algorithmic Correspondence and Completeness in Modal Logic. II. Polyadic and Hybrid Extensions of the Algorithm SQEMA , 2006, J. Log. Comput..
[3] Willem Conradie,et al. Canonicity and Relativized Canonicity via Pseudo-Correspondence: an Application of ALBA , 2015, ArXiv.
[4] Willem Conradie,et al. Algebraic modal correspondence: Sahlqvist and beyond , 2016, J. Log. Algebraic Methods Program..
[5] maarten marx,et al. Sahlqvist theory and transfer results for hybrid logics , 2004 .
[6] Willem Conradie,et al. Unified Correspondence , 2014, Johan van Benthem on Logic and Information Dynamics.
[7] B. D. ten Cate,et al. Sahlqvist theory for hybrid logic , 2004 .
[8] Willem Conradie,et al. Sahlqvist via Translation , 2016, Log. Methods Comput. Sci..
[9] Frank Wolter,et al. Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.
[10] Maarten Marx,et al. Hybrid logics with Sahlqvist axioms , 2005, Log. J. IGPL.
[11] Willem Conradie,et al. Completeness and Correspondence in Hybrid Logic via an Extension of SQEMA , 2009, M4M.
[12] Henrik Sahlqvist. Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .
[13] Ian M. Hodkinson,et al. Axiomatizing hybrid logic using modal logic , 2010, J. Appl. Log..
[14] Valentin Goranko,et al. Modal logic with names , 1993, J. Philos. Log..
[15] Alessandra Palmigiano,et al. Sahlqvist theory for impossible worlds , 2016, J. Log. Comput..
[16] J.F.A.K. van Benthem,et al. Modal logic and classical logic , 1983 .
[17] Valentin Goranko,et al. Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..
[18] Ian M. Hodkinson,et al. Hybrid Formulas and Elementarily Generated Modal Logics , 2006, Notre Dame J. Formal Log..
[19] Valentin Goranko,et al. Sahlqvist Formulas in Hybrid Polyadic Modal Logics , 2001, J. Log. Comput..
[20] Zhiguang Zhao. Sahlqvist Correspondence Theory for Sabotage Modal Logic , 2020, ArXiv.