Invariance properties of the multidimensional matching distance in Persistent Topology and Homology

Persistent Topology studies topological features of shapes by analyzing the lower level sets of suitable functions, called filtering functions, and encoding the arising information in a parameterized version of the Betti numbers, i.e. the ranks of persistent homology groups. Initially introduced by considering real-valued filtering functions, Persistent Topology has been subsequently generalized to a multidimensional setting, i.e. to the case of $\R^n$-valued filtering functions, leading to studying the ranks of multidimensional homology groups. In particular, a multidimensional matching distance has been defined, in order to compare these ranks. The definition of the multidimensional matching distance is based on foliating the domain of the ranks of multidimensional homology groups by a collection of half-planes, and hence it formally depends on a subset of $\R^n\times\R^n$ inducing a parameterization of these half-planes. It happens that it is possible to choose this subset in an infinite number of different ways. In this paper we show that the multidimensional matching distance is actually invariant with respect to such a choice.

[1]  坂上 貴之 書評 Computational Homology , 2005 .

[2]  Patrizio Frosini,et al.  The Use of Size Functions for Comparison of Shapes Through Differential Invariants , 2004, Journal of Mathematical Imaging and Vision.

[3]  Patrizio Frosini,et al.  Measuring shapes by size functions , 1992, Other Conferences.

[4]  Peter Bubenik,et al.  A statistical approach to persistent homology , 2006, math/0607634.

[5]  Alessandro Verri,et al.  Computing Size Functions from Edge Maps , 2004, International Journal of Computer Vision.

[6]  Patrizio Frosini,et al.  Size Functions and Formal Series , 2001, Applicable Algebra in Engineering, Communication and Computing.

[7]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[8]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[9]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[10]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[11]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[12]  Daniela Giorgi,et al.  Multidimensional Size Functions for Shape Comparison , 2008, Journal of Mathematical Imaging and Vision.

[13]  Patrizio Frosini,et al.  On the use of size functions for shape analysis , 1993, [1993] Proceedings IEEE Workshop on Qualitative Vision.

[14]  坂上 貴之,et al.  書評「T. Kaczynski, K. Mischaikow, and M. Mrozek:Computational Homology (Applied Mathematical Sciences 157, Springer-Verlag, 2004 年, 480 ページ)」 , 2005 .

[15]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[16]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[17]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[18]  Patrizio Frosini,et al.  Size theory as a topological tool for computer vision , 1999 .

[19]  Daniela Giorgi,et al.  Retrieval of trademark images by means of size functions , 2006, Graph. Model..

[21]  Andrea Cerri,et al.  Multidimensional persistent homology is stable , 2009 .

[22]  M. Ferri,et al.  One-dimensional reduction of multidimensional persistent homology , 2007, math/0702713.

[23]  Patrizio Frosini,et al.  New pseudodistances for the size function space , 1997, Optics & Photonics.

[24]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[25]  Daniela Giorgi,et al.  Size functions for comparing 3D models , 2008, Pattern Recognit..

[26]  Patrizio Frosini,et al.  Natural Pseudo-Distance and Optimal Matching between Reduced Size Functions , 2008, ArXiv.

[27]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[28]  Daniela Giorgi,et al.  Describing shapes by geometrical-topological properties of real functions , 2008, CSUR.

[29]  Andrea Cerri,et al.  ADVANCES IN MULTIDIMENSIONAL SIZE THEORY , 2011 .

[30]  Patrizio Frosini,et al.  Using matching distance in size theory: A survey , 2006, Int. J. Imaging Syst. Technol..