Identification of a pan-cancer oncogenic microRNA superfamily anchored by a central core seed motif

MicroRNAs modulate tumorigenesis through suppression of specific genes. As many tumour types rely on overlapping oncogenic pathways, a core set of microRNAs may exist, which consistently drives or suppresses tumorigenesis in many cancer types. Here we integrate The Cancer Genome Atlas (TCGA) pan-cancer data set with a microRNA target atlas composed of publicly available Argonaute Crosslinking Immunoprecipitation (AGO-CLIP) data to identify pan-tumour microRNA drivers of cancer. Through this analysis, we show a pan-cancer, coregulated oncogenic microRNA ‘superfamily’ consisting of the miR-17, miR-19, miR-130, miR-93, miR-18, miR-455 and miR-210 seed families, which cotargets critical tumour suppressors via a central GUGC core motif. We subsequently define mutations in microRNA target sites using the AGO-CLIP microRNA target atlas and TCGA exome-sequencing data. These combined analyses identify pan-cancer oncogenic cotargeting of the phosphoinositide 3-kinase, TGFβ and p53 pathways by the miR-17-19-130 superfamily members.

[1]  J. Wrana,et al.  TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation , 2001, Nature Cell Biology.

[2]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[3]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[4]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[5]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[6]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[7]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[8]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[9]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[10]  J. Delrow,et al.  Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation , 2008, The EMBO journal.

[11]  J. Massagué,et al.  TGFβ in Cancer , 2008, Cell.

[12]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[13]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[14]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[15]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[16]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[17]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[18]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[19]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[20]  S. Lowe,et al.  miR-19 is a key oncogenic component of mir-17-92. , 2009, Genes & development.

[21]  Jiahuai Han,et al.  Molecular and Cellular Pathobiology the Mir-17-92 Cluster of Micrornas Confers Tumorigenicity by Inhibiting Oncogene-induced Senescence , 2022 .

[22]  Francis Impens,et al.  The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. , 2010, Molecular cell.

[23]  J. Sage,et al.  Regulation of RB Transcription In Vivo by RB Family Members , 2010, Molecular and Cellular Biology.

[24]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[25]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[26]  E. Syta,et al.  The Role of SnoN in Transforming Growth Factor β1-induced Expression of Metalloprotease-Disintegrin ADAM12* , 2010, The Journal of Biological Chemistry.

[27]  F. Ferrari,et al.  A MicroRNA Targeting Dicer for Metastasis Control , 2010, Cell.

[28]  Y. Pekarsky,et al.  Reprogramming of miRNA networks in cancer and leukemia. , 2010, Genome research.

[29]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[30]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[31]  C. Sander,et al.  Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. , 2011, Genes & development.

[32]  M. Zavolan,et al.  A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins , 2011, Nature Methods.

[33]  P. Pandolfi,et al.  Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. , 2011, Cancer cell.

[34]  G. Getz,et al.  GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers , 2011, Genome Biology.

[35]  C. Sander,et al.  Predicting the functional impact of protein mutations: application to cancer genomics , 2011, Nucleic acids research.

[36]  Uwe Ohler,et al.  Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. , 2011, Cell host & microbe.

[37]  Grace X. Y. Zheng,et al.  MicroRNAs can generate thresholds in target gene expression , 2011, Nature Genetics.

[38]  J. M. Thomson,et al.  miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma. , 2011, Genes & development.

[39]  Uwe Ohler,et al.  PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data , 2011, Genome Biology.

[40]  P. Pandolfi,et al.  The functions and regulation of the PTEN tumour suppressor , 2012, Nature Reviews Molecular Cell Biology.

[41]  B. Shi,et al.  MiR‐17‐92 cluster regulates cell proliferation and collagen synthesis by targeting TGFB pathway in mouse palatal mesenchymal cells , 2012, Journal of cellular biochemistry.

[42]  Matthew B. Callaway,et al.  MuSiC: Identifying mutational significance in cancer genomes , 2012, Genome research.

[43]  Jay Shendure,et al.  Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. , 2012, Molecular cell.

[44]  Yajie Yang,et al.  Ago HITS-CLIP Expands Understanding of Kaposi's Sarcoma-associated Herpesvirus miRNA Function in Primary Effusion Lymphomas , 2012, PLoS pathogens.

[45]  Stephen Safe,et al.  IDENTIFICATION OF ONCOGENIC MicroRNA-17-92/ZBTB4/SPECIFICITY PROTEIN AXIS IN BREAST CANCER , 2011, Oncogene.

[46]  Bryan R. Cullen,et al.  The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines , 2012, PLoS pathogens.

[47]  Doron Betel,et al.  Genome-wide identification of miRNA targets by PAR-CLIP. , 2012, Methods.

[48]  M. Macías-Silva,et al.  Transforming Growth Factor-β/SMAD Target Gene SKIL Is Negatively Regulated by the Transcriptional Cofactor Complex SNON-SMAD4* , 2012, The Journal of Biological Chemistry.

[49]  A. Sivachenko,et al.  Sequence analysis of mutations and translocations across breast cancer subtypes , 2012, Nature.

[50]  Benjamin J. Raphael,et al.  Mutational landscape and significance across 12 major cancer types , 2013, Nature.

[51]  S. Gabriel,et al.  Pan-cancer patterns of somatic copy-number alteration , 2013, Nature Genetics.

[52]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[53]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.