Photovoltaic Ge/SiGe quantum dot mid-infrared photodetector enhanced by surface plasmons.

We report the fabrication and characterization of a multilayer Ge quantum dot detector grown on Si1-xGex virtual substrate (x = 0.18) for photovoltaic mid-wave infrared photodetection. Detector displays an over 100% photovoltaic response enhancement as compared to a conventional Ge/Si device due to smaller hole effective mass in the SiGe barriers. A further enhancement in sensitivity is achieved by excitation of surface plasmon polariton waves in a Ge/SiGe photodetector coupled with a two-dimensional plasmonic structure. The plasmonic resonance induced photocurrent enhancement is found to be larger when the incident infrared light illuminates the detector from its substrate side. At zero bias and 90 K, the responsivity of 40 mA/W and peak detectivity of 1.4 × 1011 cm·Hz1/2/W are determined at a wavelength of 4 µm.

[1]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[2]  Sanjay Krishna,et al.  A Surface Plasmon Enhanced Infrared Photodetector Based on Inas Quantum Dots , 2022 .

[3]  A. Dvurechenskii,et al.  Phonon bottleneck in p-type Ge/Si quantum dots , 2015 .

[4]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[5]  O. Schmidt,et al.  Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands , 2000 .

[6]  G. Bastard,et al.  Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases. , 1990, Physical review. B, Condensed matter.

[7]  S Krishna,et al.  Quantum dot infrared photodetector enhanced by surface plasma wave excitation. , 2009, Optics express.

[8]  S. Hayashi,et al.  Plasmonics: visit the past to know the future , 2012 .

[9]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[10]  Ashok K. Sood,et al.  SiGe Based Visible-NIR Photodetector Technology for Optoelectronic Applications , 2015 .

[11]  Jun-qi Liu,et al.  Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector , 2016 .

[12]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[13]  C. Hafner,et al.  Comparison of Numerical Methods for the Analysis of Plasmonic Structures , 2009 .

[14]  A. Dvurechenskii,et al.  Photoconductive gain and quantum efficiency of remotely doped Ge/Si quantum dot photodetectors , 2016 .

[15]  Gerhard Abstreiter,et al.  Intra-valence band photocurrent spectroscopy of self-assembled Ge dots in Si , 2000 .

[16]  S. Krishna,et al.  Photovoltaic quantum dot quantum cascade infrared photodetector , 2012 .

[17]  Subhananda Chakrabarti,et al.  Characteristics of a tunneling quantum-dot infrared photodetector operating at room temperature , 2005 .

[18]  E. Krol Silicon-germanium , 1999 .

[19]  Transition from planar to island growth mode in SiGe structures fabricated on SiGe/Si(001) strain-relaxed buffers , 2012 .

[20]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[21]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[22]  Jarrod Vaillancourt,et al.  Temperature-dependent photoresponsivity and high-temperature (190K) operation of a quantum dot infrared photodetector , 2007 .

[23]  C. Dais,et al.  Three-dimensional Si/Ge quantum dot crystals. , 2007, Nano letters.

[24]  Martin Walther,et al.  QWIP FPAs for high-performance thermal imaging , 2000 .

[25]  Wei Guo,et al.  Quantum selection rule dependent plasmonic enhancement in quantum dot infrared photodetectors , 2016 .

[26]  Sang‐Hyun Oh,et al.  Engineering metallic nanostructures for plasmonics and nanophotonics , 2012, Reports on progress in physics. Physical Society.

[27]  Xuejun Lu,et al.  A Longwave Infrared Focal Plane Array Enhanced by Backside-Configured Plasmonic Structures , 2014, IEEE Photonics Technology Letters.

[28]  Wei Xu,et al.  Surface plasmon polaritons: physics and applications , 2012 .

[29]  A. Vardi,et al.  Interlevel transitions and two-photon processes in Ge/Si quantum dot photocurrent , 2008 .

[30]  Xuejun Lu,et al.  Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement. , 2014, Optics express.

[31]  S. Krishna,et al.  Light direction-dependent plasmonic enhancement in quantum dot infrared photodetectors , 2010 .

[32]  Daniel Wasserman,et al.  Towards nano-scale photonics with micro-scale photons: the opportunities and challenges of mid-infrared plasmonics , 2013 .

[33]  Nutan Gautam,et al.  Sub-monolayer quantum dots in confinement enhanced dots-in-a-well heterostructure , 2012 .

[34]  Jarrod Vaillancourt,et al.  Backside-configured surface plasmonic structure with over 40 times photocurrent enhancement , 2013 .

[35]  T. Manku,et al.  EFFECTIVE MASS FOR STRAINED P-TYPE SI1-XGEX , 1991 .

[36]  Jarrod Vaillancourt,et al.  Optimizing light absorption in quantum dot infrared photodetectors by tuning surface confinement of surface plasmonic waves , 2013 .

[37]  N. Cherkashin,et al.  SiGe virtual substrates growth up to 50% Ge concentration for Si/Ge dual channel epitaxy , 2005 .

[38]  Giuseppe Grosso,et al.  Type-I alignment and direct fundamental gap in SiGe based heterostructures , 2006 .

[39]  A. Dvurechenskii,et al.  Influence of delta-doping on the performance of Ge/Si quantum-dot mid-infrared photodetectors , 2012 .