Remnant masses, spins and recoils from the merger of generic black hole binaries

We obtain empirical formulae for the final remnant black hole mass, spin, and recoil velocity from merging black hole binaries (BHBs) with arbitrary mass ratios and spins. Our formulae are based on the mass ratio and spin dependence of the post-Newtonian expressions for the instantaneous radiated energy, linear momentum, and angular momentum, as well as the ISCO binding energy and angular momentum. The relative weight between the different terms is fixed by amplitude parameters chosen through a least-squares fit of recently available fully nonlinear numerical simulations. These formulae can be used for statistical studies of N-body simulations of galaxy cores and clusters, and the cosmological growth of supermassive black holes. As an example, we use these formulae to obtain a universal spin magnitude distribution of merged black holes and recoil velocity distributions for dry and hot/cold wet mergers. We also revisit the long-term orbital precession and resonances and discuss how they affect spin distributions before the merging regime.

[1]  Y. Zlochower,et al.  Erratum: Statistical studies of spinning black-hole binaries [Phys. Rev. DPRVDAQ1550-7998 81, 084023 (2010)] , 2010 .

[2]  Y. Zlochower,et al.  Statistical studies of spinning black-hole binaries , 2009, 0910.3197.

[3]  A. Perego,et al.  Dual black holes in merger remnants – II. Spin evolution and gravitational recoil , 2009, 0910.5729.

[4]  John Silberholz,et al.  Integrating Post-Newtonian Equations on Graphics Processing Units , 2009, ArXiv.

[5]  P. Marshall,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE QUASAR SDSS J105041.35+345631.3: BLACK HOLE RECOIL OR EXTREME DOUBLE-PEAKED EMITTER? , 2022 .

[6]  N. Sago,et al.  Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole. , 2009, Physical review letters.

[7]  Lawrence E. Kidder,et al.  Recoil velocity at second post-Newtonian order for spinning black hole binaries , 2008, 0812.4413.

[8]  José A. González,et al.  B lack-hole binary sim ulations: the m ass ratio 10:1 , 2008, 0811.3952.

[9]  S. Komossa,et al.  THE X-RAY POINT-SOURCE POPULATION OF NGC 1365: THE PUZZLE OF TWO HIGHLY-VARIABLE ULTRALUMINOUS X-RAY SOURCES , 2008, 0810.3793.

[10]  G. Shields,et al.  COMMENT ON THE BLACK HOLE RECOIL CANDIDATE QUASAR SDSS J092712.65+294344.0 , 2008, 0810.2563.

[11]  Lawrence E. Kidder,et al.  High-accuracy waveforms for binary black hole inspiral, merger, and ringdown , 2008, 0810.1767.

[12]  S. Gezari,et al.  SDSSJ092712.65+294344.0: NGC 1275 AT z = 0.7? , 2008, 0810.1244.

[13]  A. Loeb,et al.  Star clusters around recoiled black holes in the Milky Way halo , 2008, 0809.4262.

[14]  D. Shoemaker,et al.  Superkicks in hyperbolic encounters of binary black holes. , 2008, Physical review letters.

[15]  Carlos O. Lousto,et al.  Modeling gravitational recoil from precessing highly spinning unequal-mass black-hole binaries , 2008, 0805.0159.

[16]  M. C. Jones Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages , 2009 .

[17]  J. Stadel,et al.  Massive Black Hole recoil in high resolution hosts , 2008, 0812.1216.

[18]  Z. Frei,et al.  Identifying decaying supermassive black hole binaries from their variable electromagnetic emission , 2008, 0811.1920.

[19]  S. Komossa,et al.  Gravitational Wave Recoil Oscillations of Black Holes: Implications for Unified Models of Active Galactic Nuclei , 2008, 0811.1037.

[20]  Y. Fujita LONG-TERM EVOLUTION OF AND X-RAY EMISSION FROM A RECOILING SUPERMASSIVE BLACK HOLE IN A DISK GALAXY , 2008, 0810.1520.

[21]  S. Komossa,et al.  HYPERCOMPACT STELLAR SYSTEMS AROUND RECOILING SUPERMASSIVE BLACK HOLES , 2008, 0809.5046.

[22]  M. Eracleous,et al.  SDSS J092712.65+294344.0: RECOILING BLACK HOLE OR A SUBPARSEC BINARY CANDIDATE? , 2008, 0809.3262.

[23]  Y. Fujita X-Ray Emission from a Supermassive Black Hole Ejected from the Center of a Galaxy , 2008, 0808.1726.

[24]  P. Marronetti,et al.  Final mass and spin of black-hole mergers , 2008, 0807.2985.

[25]  M. Kesden Can binary mergers produce maximally spinning black holes , 2008, 0807.3043.

[26]  S. Komossa,et al.  Tidal Disruption Flares from Recoiling Supermassive Black Holes , 2008, 0807.0223.

[27]  M. Colpi,et al.  Imprints of recoiling massive black holes on the hot gas of early-type galaxies , 2008, 0805.2609.

[28]  A. Loeb,et al.  Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes , 2008, 0805.1420.

[29]  S. Komossa,et al.  A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0? , 2008, 0804.4585.

[30]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[31]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[32]  J. Krolik,et al.  The Infrared Afterglow of Supermassive Black Hole Mergers , 2008, 0802.3556.

[33]  D. Kornreich,et al.  Dynamics of Kicked and Accelerated Massive Black Holes in Galaxies , 2008, 0802.2058.

[34]  S. McWilliams,et al.  Modeling Kicks from the Merger of Generic Black Hole Binaries , 2008, 0802.0416.

[35]  Marta Volonteri,et al.  Cosmological Black Hole Spin Evolution by Mergers and Accretion , 2008, 0802.0025.

[36]  Ny,et al.  Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.

[37]  Sascha Husa,et al.  Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case , 2007, 0712.3787.

[38]  A. Gopakumar,et al.  Comparison between numerical relativity and a new class of post-Newtonian gravitational-wave phase evolutions: The nonspinning equal-mass case , 2007, 0712.3737.

[39]  L. Rezzolla,et al.  PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES , 2007, 0904.2577.

[40]  M. Kesden,et al.  Spin expansion for binary black hole mergers: New predictions and future directions , 2007, 0712.2819.

[41]  B. Bruegmann,et al.  Multipolar analysis of spinning binaries , 2007, 0711.1097.

[42]  M. Volonteri,et al.  Compact massive objects in Virgo galaxies: the black hole population , 2007, 0710.5770.

[43]  M. Ansorg,et al.  Eccentric binary black-hole mergers: The transition from inspiral to plunge in general relativity , 2007, 0710.3823.

[44]  Ernst Nils Dorband,et al.  The Final Spin from the Coalescence of Aligned-Spin Black Hole Binaries , 2007, 0710.3345.

[45]  Lawrence E. Kidder,et al.  Estimating the final spin of a binary black hole coalescence , 2007, 0709.3839.

[46]  Y. Zlochower,et al.  Further insight into gravitational recoil , 2007, 0708.4048.

[47]  Ernst Nils Dorband,et al.  Spin Diagrams for Equal-Mass Black Hole Binaries with Aligned Spins , 2007, 0708.3999.

[48]  Alessia Gualandris,et al.  Ejection of Supermassive Black Holes from Galaxy Cores , 2007, 0708.0771.

[49]  José A. González,et al.  Exploring black hole superkicks , 2007, 0707.0135.

[50]  Yale University,et al.  Powerful Flares from Recoiling Black Holes in Quasars , 2007, 0802.3873.

[51]  P. Natarajan,et al.  The evolution of massive black hole seeds , 2007, 0709.0529.

[52]  K. Holley-Bockelmann,et al.  Gravitational Wave Recoil and the Retention of Intermediate-Mass Black Holes , 2007, 0707.1334.

[53]  S. McWilliams,et al.  Toward faithful templates for non-spinning binary black holes using the effective-one-body approach , 2007, 0706.3732.

[54]  Richard A. Matzner,et al.  Binary black holes: Spin dynamics and gravitational recoil , 2007, 0706.2541.

[55]  J. Schnittman Retaining Black Holes with Very Large Recoil Velocities , 2007, 0706.1548.

[56]  G. Shields,et al.  Recoiling Black Holes in Quasars , 2007, 0705.4263.

[57]  G. Shields,et al.  Quasars with a Kick -- Black Hole Recoil in Quasars , 2007, 0707.3625.

[58]  A. Loeb Observable signatures of a black hole ejected by gravitational-radiation recoil in a galaxy merger. , 2007, Physical review letters.

[59]  José A. González,et al.  Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.

[60]  Y. Zlochower,et al.  Maximum gravitational recoil. , 2007, Physical review letters.

[61]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[62]  Y. Zlochower,et al.  Large Merger Recoils and Spin Flips from Generic Black Hole Binaries , 2007, gr-qc/0701164.

[63]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[64]  B. Krishnan,et al.  Spin Flips and Precession in Black-Hole-Binary Mergers , 2006, gr-qc/0612076.

[65]  Y. Zlochower,et al.  Spin-orbit interactions in black-hole binaries , 2006, astro-ph/0608275.

[66]  Y. Zlochower,et al.  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[67]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[68]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[69]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[70]  J. Schnittman Spin-orbit resonance and the evolution of compact binary systems , 2004, astro-ph/0409174.

[71]  C. Lousto,et al.  Coalescence remnant of spinning binary black holes , 2003, astro-ph/0305287.

[72]  L. Blanchet,et al.  Equations of motion of point particle binaries at the third postNewtonian order , 2000, gr-qc/0004009.

[73]  Kidder,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.