Exceptionally large migration length of carbon and topographically-facilitated self-limiting molecular beam epitaxial growth of graphene on hexagonal boron nitride

[1]  C. T. Foxon,et al.  Strain-Engineered Graphene Grown on Hexagonal Boron Nitride by Molecular Beam Epitaxy , 2016, Scientific Reports.

[2]  C. T. Foxon,et al.  High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire , 2016 .

[3]  Jianlin Liu,et al.  In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy , 2015, Scientific Reports.

[4]  M. H. Oliveira,et al.  The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy , 2015 .

[5]  José A. Martín-Gago,et al.  Graphene growth on Pt(111) and Au(111) using a MBE carbon solid-source , 2015 .

[6]  M. Jiang,et al.  Silane-catalysed fast growth of large single-crystalline graphene on hexagonal boron nitride , 2015, Nature Communications.

[7]  T. Schroeder,et al.  Role of defects in the process of graphene growth on hexagonal boron nitride from atomic carbon , 2014 .

[8]  L. Pfeiffer,et al.  Single- and bi-layer graphene grown on sapphire by molecular beam epitaxy , 2014 .

[9]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[10]  Liping Huang,et al.  Near‐Equilibrium Chemical Vapor Deposition of High‐Quality Single‐Crystal Graphene Directly on Various Dielectric Substrates , 2014, Advanced materials.

[11]  M. H. Oliveira,et al.  Structural investigation of nanocrystalline graphene grown on (6√3 × 6√3)R30°-reconstructed SiC surfaces by molecular beam epitaxy , 2013 .

[12]  M. Hersam,et al.  Solid-source growth and atomic-scale characterization of graphene on Ag(111) , 2013, Nature Communications.

[13]  Carl W. Magnuson,et al.  The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper , 2013, Science.

[14]  Huafeng Yang,et al.  Raman fingerprint of aligned graphene/h-BN superlattices. , 2013, Nano letters.

[15]  Yu Zhang,et al.  Precisely aligned graphene grown on hexagonal boron nitride by catalyst free chemical vapor deposition , 2013, Scientific Reports.

[16]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[17]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[18]  L. Pfeiffer,et al.  Counting molecular-beam grown graphene layers , 2013 .

[19]  Jae-Young Choi,et al.  A Platform for Large‐Scale Graphene Electronics – CVD Growth of Single‐Layer Graphene on CVD‐Grown Hexagonal Boron Nitride , 2013, Advanced materials.

[20]  M. H. Oliveira,et al.  Mono- and few-layer nanocrystalline graphene grown on Al2O3(0001) by molecular beam epitaxy , 2013 .

[21]  J. Maultzsch,et al.  Molecular beam growth of micrometer-size graphene on mica , 2013 .

[22]  J. Y. Kwak,et al.  van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. , 2013, ACS nano.

[23]  Chien-Cheng Chang,et al.  Low-temperature grown graphene films by using molecular beam epitaxy , 2012 .

[24]  Cinzia Casiraghi,et al.  Probing the nature of defects in graphene by Raman spectroscopy. , 2012, Nano letters.

[25]  B. Liu,et al.  Nitrogen and boron doped monolayer graphene by chemical vapor deposition using polystyrene, urea and boric acid , 2012 .

[26]  C. Zou,et al.  Effect of substrate temperature on few-layer graphene grown on Al2O3 (0 0 0 1) via direct carbon atoms deposition , 2012 .

[27]  R. Buizza,et al.  Graphene growth on h-BN by molecular beam epitaxy , 2012, 1204.2443.

[28]  L. Pfeiffer,et al.  Molecular beam growth of graphene nanocrystals on dielectric substrates , 2012, 1202.2905.

[29]  Wensheng Yan,et al.  Growth of Few-Layer Graphene on Sapphire Substrates by Directly Depositing Carbon Atoms , 2011 .

[30]  Rui He,et al.  Visualizing Individual Nitrogen Dopants in Monolayer Graphene , 2011, Science.

[31]  Hee Cheul Choi,et al.  Direct growth of graphene pad on exfoliated hexagonal boron nitride surface. , 2011, Nanoscale.

[32]  Max C. Lemme,et al.  Direct graphene growth on insulator , 2011, 1106.2070.

[33]  Wensheng Yan,et al.  Graphene films grown on Si substrate via direct deposition of solid-state carbon atoms , 2011 .

[34]  J. Maultzsch,et al.  Raman spectroscopy of lithographically patterned graphene nanoribbons. , 2011, ACS nano.

[35]  C. Stampfer,et al.  Raman spectroscopy on etched graphene nanoribbons , 2011, 1105.1001.

[36]  P. Kim,et al.  Nanocrystalline Graphite Growth on Sapphire by Carbon Molecular Beam Epitaxy , 2011 .

[37]  X. Wallart,et al.  Graphene growth by molecular beam epitaxy on the carbon-face of SiC , 2010 .

[38]  M. Fuhrer,et al.  Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition , 2010, 1011.1683.

[39]  Jeongho Park,et al.  Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE) , 2010, Advanced materials.

[40]  E. Pop,et al.  Reliably counting atomic planes of few-layer graphene (n > 4). , 2010, ACS nano.

[41]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[42]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[43]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[44]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[45]  K. Novoselov,et al.  Compression behavior of single-layer graphenes. , 2010, ACS nano.

[46]  K. West,et al.  Multilayer graphene films grown by molecular beam deposition , 2010 .

[47]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[48]  M. Dresselhaus,et al.  Raman spectroscopy in graphene , 2009 .

[49]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[50]  N. Marzari,et al.  Uniaxial Strain in Graphene by Raman Spectroscopy: G peak splitting, Gruneisen Parameters and Sample Orientation , 2008, 0812.1538.

[51]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[52]  A. Ferrari,et al.  Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects , 2007 .

[53]  S. S.Jiménez Raman shift on n-doped amorphous carbon thin films grown by electron beam evaporation , 2007 .

[54]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[55]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[56]  P. Kim,et al.  Electric field effect tuning of electron-phonon coupling in graphene. , 2006, Physical review letters.

[57]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[58]  R. Nemanich,et al.  Raman scattering of tetrahedrally-bonded amorphous carbon deposited at oblique angles , 1999 .

[59]  Atsushi Koma,et al.  Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system , 1992 .

[60]  U. König,et al.  SiO diffusion during thermal decomposition of SiO2 , 1990 .

[61]  Wagner,et al.  Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. , 1989, Physical review. B, Condensed matter.

[62]  Tromp,et al.  High-temperature SiO2 decomposition at the SiO2/Si interface. , 1985, Physical review letters.