Carbon Dioxide Conversion by Reverse Water–Gas Shift Chemical Looping on Perovskite-Type Oxides

Carbon dioxide conversion to carbon monoxide was studied in an intensified chemical looping reverse water–gas shift reaction (RWGS–CL) process using parent perovskite-type oxides as oxygen carriers. Five different strontium-doped lanthanum cobaltites, La1–XSrXCoO3−δ (0 ≤ X ≤1 in steps of 0.25), were synthesized using the Pechini method and their structures were examined with X-ray diffraction (XRD). Temperature-programmed (H2-TPR, CO2-TPO) and isothermal CO2 conversion experiments were performed to evaluate their properties and abilities for carbon dioxide conversion. The production of carbon monoxide from the reduced parent oxides is enhanced when X = 0.25. From the three H2-reduction temperatures studied (400, 500, and 600 °C), 500 °C was determined as the optimum, presumably due to the formation of mixed oxides and metallic cobalt crystalline phases (observed via XRD) in close contact. Furthermore, isothermal CO2 conversion rates increased with temperature over the tested range (650 to 850 °C). Results...

[1]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[2]  V. Cherepanov,et al.  Crystal structure, electrical and magnetic properties of La1 − xSrxCoO3 − y , 1995 .

[3]  Qinghong Zhang,et al.  Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. , 2013, Angewandte Chemie.

[4]  A. Steinfeld,et al.  Lanthanum–Strontium–Manganese Perovskites as Redox Materials for Solar Thermochemical Splitting of H2O and CO2 , 2013 .

[5]  J. Rupp,et al.  Perovskite La0.6Sr0.4Cr1−xCoxO3−δ solid solutions for solar-thermochemical fuel production: strategies to lower the operation temperature , 2015 .

[6]  A. Boréave,et al.  La(1−x)SrxCo1−yFeyO3 perovskites prepared by sol–gel method: Characterization and relationships with catalytic properties for total oxidation of toluene , 2009 .

[7]  D. Duprez,et al.  Role of bulk and grain boundary oxygen mobility in the catalytic oxidation activity of LaCo1–xFexO3 , 2005 .

[8]  G. Veser,et al.  Hydrogen Production via Chemical Looping Steam Reforming in a Periodically Operated Fixed-Bed Reactor , 2010 .

[9]  Jerry Y. S. Lin,et al.  Fixed-bed performance for production of oxygen-enriched carbon dioxide stream by perovskite-type ceramic sorbent , 2006 .

[10]  D. Trimm,et al.  The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina , 1994 .

[11]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[12]  Armelle Ringuedé,et al.  Oxygen reaction on strontium-doped lanthanum cobaltite dense electrodes at intermediate temperatures , 2001 .

[13]  E. Zhecheva,et al.  Effect of the synthesis route on the microstructure and the reducibility of LaCoO3 , 2009 .

[14]  A. Thursfield,et al.  A chemical looping process for hydrogen production using iron-containing perovskites , 2011 .

[15]  Todd H. Gardner,et al.  Carbon capture and utilization via chemical looping dry reforming , 2011 .

[16]  M. A. Peña,et al.  Chemical structures and performance of perovskite oxides. , 2001, Chemical reviews.

[17]  H. Tagawa,et al.  Nonstoichiometry of the perovskite-type oxides La1−xSrxCoO3−δ , 1989 .

[18]  G. Olah The Role of Catalysis in Replacing Oil by Renewable Methanol Using Carbon dioxide Capture and Recycling (CCR) , 2013, Catalysis Letters.

[19]  T. Ishihara Perovskite Oxide for Solid Oxide Fuel Cells , 2009 .

[20]  D. O. Hayward,et al.  The adsorption of carbon monoxide on evaporated metal films , 1965, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  J. Tascón,et al.  Infrared spectroscopic study of the adsorption of pyridine, carbon monoxide and carbon dioxide on the perovskite-type oxides LaMO3 , 1984 .

[22]  Christos T. Maravelias,et al.  Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis , 2011 .

[23]  James P. Lewis,et al.  Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. , 2013, Nanoscale.

[24]  YamazoeNoboru,et al.  THE EFFECT OF OXYGEN SORPTION ON THE CRYSTAL STRUCTURE OF La1−xSrxCoO3−δ , 1982 .

[25]  G. Flamant,et al.  CO2 and H2O Splitting for Thermochemical Production of Solar Fuels Using Nonstoichiometric Ceria and Ceria/Zirconia Solid Solutions , 2011 .

[26]  Debora Fino,et al.  The role of suprafacial oxygen in some perovskites for the catalytic combustion of soot , 2003 .

[27]  Ulrich Vogt,et al.  Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System , 2012 .

[28]  C. Ferrara,et al.  Average versus local structure in K2NiF4-type LaSrAlO4: direct experimental evidence of local cationic ordering , 2012 .

[29]  G. Centi,et al.  Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries , 2013 .

[30]  H. Verweij,et al.  Oxygen transport through La1 − xSrxFeO3 − δ membranes II. Permeation in air/CO, CO2 gradients , 1996 .

[31]  Nathan P. Siegel,et al.  Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles , 2008 .

[32]  Ching-Shiun Chen,et al.  Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst , 2000 .

[33]  J. Kuhn,et al.  Oxygen Exchange Kinetics over Sr-and Co-Doped LaFeO3 , 2008 .

[34]  B. Malič,et al.  Perovskite type nanopowders and thin films obtained by chemical methods , 2010 .

[35]  Saurabh Bhavsar,et al.  Chemical Looping Dry Reforming as Novel, Intensified Process for CO2 Activation , 2012 .

[36]  A. Ghenciu,et al.  Study of the origin of the deactivation of a Pt/CeO2 catalyst during reverse water gas shift (RWGS) reaction , 2004 .

[37]  Yngve Larring,et al.  La0.8Sr0.2Co0.2Fe0.8O3−δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study , 2005 .

[38]  Dharik S. Mallapragada,et al.  Sun-to-Fuel Assessment of Routes for Fixing CO2 as Liquid Fuel , 2013 .

[39]  W. Chueh,et al.  Sr- and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production , 2013 .

[40]  J. Kuhn,et al.  Role of the Ni:Fe Ratio in Ethylene Hydrogenation Activity for Silica-Supported Ni–Fe Clusters Prepared by Dendrimer-Templating , 2012 .

[41]  V. Cherepanov,et al.  Phase equilibria and crystal structures of solid solutions in the system LaCoO3−δ-SrCoO2.5±δ-SrFeO3−δ-LaFeO3−δ , 2007 .

[42]  Rita Karolinny Chaves de Lima,et al.  High specific surface area LaFeCo perovskites—Synthesis by nanocasting and catalytic behavior in the reduction of NO with CO , 2009 .

[43]  M. Kosec,et al.  Characterization of LaCoO3 powders obtained by water-based sol–gel method with citric acid , 2007 .

[44]  M. Aresta,et al.  Utilisation of CO2 as a chemical feedstock: opportunities and challenges. , 2007, Dalton transactions.

[45]  M. Misono,et al.  Reduction-oxidation and catalytic properties of La1−xSrxCoO3 , 1983 .

[46]  Thomas Bligaard,et al.  The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis , 2004 .

[47]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[48]  S. Kaliaguine,et al.  Novel oxygen carriers for chemical looping combustion: La1−xCexBO3 (B = Co, Mn) perovskites synthesized by reactive grinding and nanocasting , 2011 .

[49]  E. A. Payzant,et al.  Thermal, mechanical and phase stability of LaCoO3 in reducing and oxidizing environments , 2008 .

[50]  M. Kakihana,et al.  Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route , 2002 .

[51]  Y. Okimoto,et al.  Metallic ferromagnet with square-lattice CoO2 sheets. , 2004, Physical review letters.

[52]  J. Kuhn,et al.  Methanol Decomposition over Palladium Particles Supported on Silica: Role of Particle Size and Co-Feeding Carbon Dioxide on the Catalytic Properties , 2012 .

[53]  D. Klvana,et al.  Catalytic decomposition of nitric oxide by perovskites , 1999 .

[54]  M. Misono,et al.  Catalytic Properties of Perovskite-type Mixed Oxides, La1−xSrxCoO3 , 1982 .

[55]  J. Kuhn,et al.  Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1−Y)FeYO3 perovskite-type oxides , 2015 .

[56]  Christos T. Maravelias,et al.  Fuel production from CO2 using solar-thermal energy: system level analysis , 2012 .

[57]  N. Yamazoe,et al.  TPD AND XPS STUDY ON THERMAL BEHAVIOR OF ABSORBED OXYGEN IN La1−xSrxCoO3 , 1981 .

[58]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[59]  Zongping Shao,et al.  Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol–gel synthesis , 2008 .

[60]  Iwao Omae,et al.  Aspects of carbon dioxide utilization , 2006 .