Sub-quantum Fisher information

The quantum Fisher information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a lower bound on the QFI which we call the sub-quantum Fisher information (sub-QFI). The bound can be efficiently estimated on a quantum computer for an n-qubit state using 2n qubits. The sub-QFI is based on the super-fidelity, an upper bound on Uhlmann’s fidelity. We analyze the sub-QFI in the context of unitary families, where we derive several crucial properties including its geometrical interpretation. In particular, we prove that the QFI and the sub-QFI are maximized for the same optimal state, which implies that the sub-QFI is faithful to the QFI in the sense that both quantities share the same global extrema. Based on this faithfulness, the sub-QFI acts as an efficiently computable surrogate for the QFI for quantum sensing and quantum metrology applications. Finally, we provide additional meaning to the sub-QFI as a measure of coherence, asymmetry, and purity loss.

[1]  Vlatko Vedral,et al.  Quantum Correlations in Mixed-State Metrology , 2010, 1003.1174.

[2]  P. Cappellaro,et al.  Nonclassical correlations for quantum metrology in thermal equilibrium , 2018, Physical Review A.

[3]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[4]  Ali T. Rezakhani,et al.  Extended convexity of quantum Fisher information in quantum metrology , 2015 .

[5]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[6]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[7]  Frederic T. Chong,et al.  Adaptive Circuit Learning for Quantum Metrology , 2020, 2021 IEEE International Conference on Quantum Computing and Engineering (QCE).

[8]  Jaroslaw Adam Miszczak,et al.  Sub- and super-fidelity as bounds for quantum fidelity , 2008, Quantum Inf. Comput..

[9]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[10]  Davide Girolami,et al.  Observable measure of quantum coherence in finite dimensional systems. , 2014, Physical review letters.

[11]  Patrick J. Coles,et al.  Variational Quantum State Eigensolver , 2020, 2004.01372.

[12]  Gerardo Adesso,et al.  Multiparameter Gaussian quantum metrology , 2017, Physical Review A.

[13]  Mark M. Wilde,et al.  Geometric distinguishability measures limit quantum channel estimation and discrimination , 2021, Quantum Inf. Process..

[14]  F. Reinhard,et al.  Quantum sensing , 2016, 1611.02427.

[15]  Alfredo Luis,et al.  Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. , 2010, Physical review letters.

[16]  Sukin Sim,et al.  Noisy intermediate-scale quantum (NISQ) algorithms , 2021, Reviews of Modern Physics.

[17]  Vlatko Vedral,et al.  General framework for quantum macroscopicity in terms of coherence , 2015, 1505.03792.

[18]  M. Cerezo,et al.  Generalized measure of quantum Fisher information , 2020, Physical Review A.

[19]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[20]  Paola Cappellaro,et al.  Quantifying precision loss in local quantum thermometry via diagonal discord , 2018, Physical Review A.

[21]  Davide Girolami,et al.  Detecting metrologically useful asymmetry and entanglement by a few local measurements , 2016, 1611.02004.

[22]  Zheng-Da Hu,et al.  Scaling of quantum Fisher information close to the quantum phase transition in the XY spin chain , 2016 .

[23]  Paulo E. M. F. Mendonca,et al.  Alternative fidelity measure between quantum states , 2008, 0806.1150.

[24]  Patrick J. Coles,et al.  Variational Quantum Linear Solver. , 2020 .

[25]  Jing Liu,et al.  Fidelity susceptibility and quantum Fisher information for density operators with arbitrary ranks , 2014, 1401.3154.

[26]  S. Luo,et al.  Quantum coherence versus quantum uncertainty , 2017 .

[27]  K. Banaszek,et al.  Optimal lossy quantum interferometry in phase space , 2017, 1705.00065.

[28]  M. Wilde,et al.  Optimal estimation and discrimination of excess noise in thermal and amplifier channels , 2016, 1611.09165.

[29]  Jayne Thompson,et al.  Fragile states are better for quantum metrology , 2016 .

[30]  General Expressions for the Quantum Fisher Information Matrix with Applications to Discrete Quantum Imaging , 2020, 2012.01572.

[31]  D. Petz,et al.  Introduction to Quantum Fisher Information , 2010, 1008.2417.

[32]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Luo Wigner-Yanase skew information vs. quantum Fisher information , 2003 .

[34]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[35]  Daniel Braun,et al.  Improving the dynamics of quantum sensors with reinforcement learning , 2019, New Journal of Physics.

[36]  Dominik Šafránek Discontinuities of the quantum Fisher information and the Bures metric , 2017 .

[37]  G. Tóth,et al.  Optimal witnessing of the quantum Fisher information with few measurements , 2015, 1511.05203.

[38]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[39]  Jaroslaw Adam Miszczak,et al.  Bound on trace distance based on superfidelity , 2008, Physical Review A.

[40]  Patrick J. Coles,et al.  Variational quantum algorithm for estimating the quantum Fisher information , 2020, Physical Review Research.

[41]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[42]  Skew Information Revisited: Its Variants and a Comparison of Them , 2020 .

[43]  Jens Eisert,et al.  A variational toolbox for quantum multi-parameter estimation , 2020, npj Quantum Information.

[44]  Ryuji Takagi,et al.  Skew informations from an operational view via resource theory of asymmetry , 2018, Scientific Reports.

[45]  F. Nori,et al.  Quantum Fisher information as a signature of the superradiant quantum phase transition , 2013, 1312.1426.

[46]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[47]  Jiangfeng Du,et al.  Probe optimization for quantum metrology via closed-loop learning control , 2020, 2006.09730.

[48]  Lukas J. Fiderer,et al.  Maximal Quantum Fisher Information for Mixed States. , 2019, Physical review letters.

[49]  L. Pezzè,et al.  Quantum metrology with nonclassical states of atomic ensembles , 2016, Reviews of Modern Physics.

[50]  G. Tóth Lower bounds on the quantum Fisher information based on the variance and various types of entropies , 2017, 1701.07461.

[51]  John Watrous Quantum statistical zero-knowledge , 2002 .

[52]  Jing Liu,et al.  Quantum Fisher information and symmetric logarithmic derivative via anti-commutators , 2015, 1501.04290.

[53]  J. P. Garrahan,et al.  Dynamical phase transitions as a resource for quantum enhanced metrology , 2014, 1411.3914.

[54]  A. Luis,et al.  Intrinsic metrological resolution as a distance measure and nonclassical light , 2008, 0801.4680.

[55]  M. Hübner Explicit computation of the Bures distance for density matrices , 1992 .

[56]  Berthold-Georg Englert,et al.  Quantum Fisher information with coherence , 2019, Optica.

[57]  B'alint Koczor,et al.  Variational-state quantum metrology , 2019, New Journal of Physics.

[58]  Patrick J. Coles,et al.  Variational Quantum Fidelity Estimation , 2019, Quantum.

[59]  S. Luo,et al.  Informational distance on quantum-state space , 2004 .

[60]  P. Hauke,et al.  Relating Out-of-Time-Order Correlations to Entanglement via Multiple-Quantum Coherences. , 2017, Physical review letters.

[61]  Shuan-ping Du,et al.  The Wigner-Yanase information can increase under phase sensitive incoherent operations , 2015, 1505.00151.

[62]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.