Spatial entanglement of bosons in optical lattices

Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the complexity of quantum many-body states. The quantitative estimation of entanglement in many-body systems represents a major challenge, as it requires either full-state tomography, scaling exponentially in the system size, or the assumption of unverified system characteristics such as its Hamiltonian or temperature. Here we adopt recently developed approaches for the determination of rigorous lower entanglement bounds from readily accessible measurements and apply them in an experiment of ultracold interacting bosons in optical lattices of ~10(5) sites. We then study the behaviour of spatial entanglement between the sites when crossing the superfluid-Mott insulator transition and when varying temperature. This constitutes the first rigorous experimental large-scale entanglement quantification in a scalable quantum simulator.

[1]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[2]  F Minardi,et al.  Expansion of a coherent array of Bose-Einstein condensates. , 2001, Physical review letters.

[3]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[4]  J. Cirac,et al.  Delocalized entanglement of atoms in optical lattices. , 2006, Physical review letters.

[5]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[6]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[7]  J. Eisert,et al.  Colloquium: Area laws for the entanglement entropy , 2010 .

[8]  Jelmer J. Renema,et al.  Entanglement-assisted atomic clock beyond the projection noise limit , 2009, 0912.3895.

[9]  I Bloch,et al.  Observation of Correlated Particle-Hole Pairs and String Order in Low-Dimensional Mott Insulators , 2011, Science.

[10]  Jens Eisert,et al.  Quantitative entanglement witnesses , 2006, quant-ph/0607167.

[11]  H M Wiseman,et al.  Entanglement of indistinguishable particles shared between two parties. , 2003, Physical review letters.

[12]  D. Pritchard,et al.  Spin gradient thermometry for ultracold atoms in optical lattices. , 2009, Physical review letters.

[13]  Expansion of a quantum gas released from an optical lattice. , 2008, Physical review letters.

[14]  M. Oberthaler,et al.  Squeezing and Entanglement in a Bose-Einstein Condensate , 2010 .

[15]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[16]  D. Bruß,et al.  Multipartite entanglement detection via structure factors. , 2009, Physical review letters.

[17]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[18]  U. Marzolino,et al.  Bipartite entanglement in systems of identical particles: The partial transposition criterion , 2012, 1202.2993.

[19]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[20]  M B Plenio,et al.  Measuring entanglement in condensed matter systems. , 2011, Physical review letters.

[21]  L. Masanes All bipartite entangled states are useful for information processing. , 2005, Physical review letters.

[22]  F Verstraete,et al.  Quantum nonlocality in the presence of superselection rules and data hiding protocols. , 2003, Physical review letters.

[23]  Immanuel Bloch,et al.  Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms. , 2002 .

[24]  D. Steck Rubidium 85 D Line Data , 2008 .

[25]  Ryszard Horodecki,et al.  Entanglement processing and statistical inference: The Jaynes principle can produce fake entanglement , 1999 .

[26]  F. Brandão Quantifying entanglement with witness operators , 2005, quant-ph/0503152.

[27]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[28]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[29]  V. Vuletić,et al.  Orientation-dependent entanglement lifetime in a squeezed atomic clock. , 2010, Physical review letters.

[30]  M. B. Plenio,et al.  When are correlations quantum?—verification and quantification of entanglement by simple measurements , 2006 .

[31]  F. Brandão,et al.  Entanglement theory and the second law of thermodynamics , 2008, 0810.2319.

[32]  Cheng Chin,et al.  In situ observation of incompressible Mott-insulating domains in ultracold atomic gases , 2009, Nature.

[33]  I. B. Spielman,et al.  A pr 2 00 9 Rapid production of 87 Rb BECs in a combined magnetic and optical potential , 2009, 0904.3314.

[34]  J I Cirac,et al.  Nonlocal resources in the presence of superselection rules. , 2003, Physical review letters.

[35]  G. Aeppli,et al.  Quantum dynamics and entanglement of spins on a square lattice , 2007, Proceedings of the National Academy of Sciences.

[36]  G. Tóth,et al.  Entanglement detection , 2008, 0811.2803.

[37]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[38]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[39]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[40]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[41]  Cheng-Zhi Peng,et al.  Observation of eight-photon entanglement , 2011, Nature Photonics.

[42]  D. Guéry-Odelin,et al.  Strong saturation absorption imaging of dense clouds of ultracold atoms. , 2007, Optics letters.

[43]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.