Labelled Systems in Modal Logics
暂无分享,去创建一个
[1] Heinrich Zimmermann,et al. Efficient Loop-Check for Backward Proof Search in Some Non-classical Propositional Logics , 1996, TABLEAUX.
[2] Reiner Hähnle,et al. Automated deduction in multiple-valued logics , 1993, International series of monographs on computer science.
[3] Alexander Bolotov,et al. Natural Deduction Calculus for Linear-Time Temporal Logic , 2006, JELIA.
[4] Andrzej Indrzejczak. Generalised sequent calculus for propositional modal logics , 1997 .
[5] G. Priest. An introduction to non-classical logic , 2001 .
[6] Claudio Castellini,et al. Automated reasoning in quantified modal and temporal logics , 2005, AI Commun..
[7] Melvin Fitting,et al. Destructive Modal Resolution , 1990, J. Log. Comput..
[8] Patrick Blackburn,et al. Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.
[9] H. Wansing. Displaying Modal Logic , 1998 .
[10] Luca Viganò,et al. Natural Deduction for Non-Classical Logics , 1998, Stud Logica.
[11] M. Sato. A Study of Kripke-type Models for Some Modal Logics by Gentzen's Sequential Method , 1977 .
[12] Andrzej Indrzejczak,et al. SEQUENT CALCULI FOR MONOTONIC MODAL LOGICS , 2005 .
[13] Haskell B. Curry,et al. The elimination theorem when modality is present , 1952, Journal of Symbolic Logic.
[14] Dov M. Gabbay,et al. Labelled deduction , 2000 .
[15] Luca Viganò,et al. Labelled Propositional Modal Logics: Theory and Practice , 1997, J. Log. Comput..
[16] Frank Wolter,et al. Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.
[17] Melvin Fitting,et al. Modal proof theory , 2007, Handbook of Modal Logic.
[18] Fabio Massacci,et al. Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.
[19] Matteo Baldoni,et al. Normal multimodal logics with interaction axioms , 2000 .
[20] D. Gabbay,et al. Handbook of tableau methods , 1999 .
[21] Richard L. Mendelsohn,et al. First-Order Modal Logic , 1998 .
[22] Patrick Blackburn,et al. Internalizing labelled deduction , 2000, J. Log. Comput..
[23] Alan Smaill,et al. Centre for Intelligent Systems and Their Applications a Systematic Presentation of Quantified Modal Logics a Systematic Presentation of Quantified Modal Logics a Systematic Presentation of Quantified Modal Logics , 2022 .
[24] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[25] M. Baldoni. Normal Multimodal Logics: Automatic Deduction and Logic Programming Extension , 1998 .
[26] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[27] H. Nishimura. A Study of Some Tense Logics by Gentzen's Sequential Method , 1980 .
[28] Dorota Leszczynska-Jasion,et al. The Method of Socratic Proofs for Modal Propositional Logics: K5, S4.2, S4.3, S4F, S4R, S4M and G , 2008, Stud Logica.
[29] Szabolcs Mikulás,et al. Tableau Calculus for Local Cubic Modal Logic and it's Implementation , 1999, Log. J. IGPL.
[30] Andrzej Indrzejczak,et al. A Labelled Natural Deduction System for Linear Temporal Logic , 2003, Stud Logica.
[31] Haskell B. Curry,et al. A Theory Of Formal Deducibility , 1950 .
[32] Luca Viganò,et al. Labelled non-classical logics , 2000 .
[33] S. Blamey,et al. A Perspective on Modal Sequent Logic , 1991 .
[34] Bangs L. Tapscott. A simplified natural deduction approach to certain modal systems , 1987, Notre Dame J. Formal Log..
[35] Furio Honsell,et al. Encoding Modal Logics in Logical Frameworks , 1998, Stud Logica.
[36] Rajeev Goré,et al. Tableau Methods for Modal and Temporal Logics , 1999 .
[37] Andrzej Indrzejczak,et al. Cut-free Double Sequent Calculus for S5 , 1998, Log. J. IGPL.
[38] R. L. Goodstein,et al. Provability in logic , 1959 .
[39] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[40] Rajeev Goré,et al. A Labelled Sequent System for Tense Logic Kt , 1998, Australian Joint Conference on Artificial Intelligence.
[41] Grigori Mints,et al. Indexed systems of sequents and cut-elimination , 1997, J. Philos. Log..
[42] Maarten Marx,et al. The Mosaic Method for Temporal Logics , 2000, TABLEAUX.
[43] Alasdair Urquhart,et al. Temporal Logic , 1971 .
[44] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[45] Melvin Fitting,et al. Tableau methods of proof for modal logics , 1972, Notre Dame J. Formal Log..
[46] G. Rousseau. Sequents in many valued logic I , 1967 .