β-Adrenergic axis and heart disease

[1]  Lan Mao,et al.  Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy. , 2001, Journal of the American College of Cardiology.

[2]  M. Caron,et al.  Agonist-dependent Recruitment of Phosphoinositide 3-Kinase to the Membrane by β-Adrenergic Receptor Kinase 1 , 2001, The Journal of Biological Chemistry.

[3]  R. Lefkowitz,et al.  Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  W. Koch,et al.  Cardiac Overexpression of a Gq Inhibitor Blocks Induction of Extracellular Signal–Regulated Kinase and c-Jun NH2-Terminal Kinase Activity in In Vivo Pressure Overload , 2001, Circulation.

[5]  B. Kobilka,et al.  Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Dorn,et al.  Cytoplasmic signaling pathways that regulate cardiac hypertrophy. , 2001, Annual review of physiology.

[7]  W. Lederer,et al.  Cellular and functional defects in a mouse model of heart failure. , 2000, American journal of physiology. Heart and circulatory physiology.

[8]  K. Chien Genomic circuits and the integrative biology of cardiac diseases , 2000, Nature.

[9]  G. Dorn,et al.  Polymorphisms of the β2-Adrenergic Receptor Determine Exercise Capacity in Patients With Heart Failure , 2000 .

[10]  G. Dorn,et al.  Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. , 2000, Circulation.

[11]  R. Lefkowitz,et al.  Catecholamines, Cardiac b-Adrenergic Receptors, and Heart Failure , 2000 .

[12]  W. Koch,et al.  Gβγ-dependent Phosphoinositide 3-Kinase Activation in Hearts with in Vivo Pressure Overload Hypertrophy* , 2000, The Journal of Biological Chemistry.

[13]  R. Hetzer,et al.  β1-Adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy? , 2000, Journal of Molecular Medicine.

[14]  R. Lefkowitz,et al.  Functional consequences of altering myocardial adrenergic receptor signaling. , 2000, Annual review of physiology.

[15]  M. Cho,et al.  Defective β-Adrenergic Receptor Signaling Precedes the Development of Dilated Cardiomyopathy in Transgenic Mice with Calsequestrin Overexpression* , 1999, The Journal of Biological Chemistry.

[16]  Fach,et al.  Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF) , 1999, The Lancet.

[17]  K. Desai,et al.  Targeted Disruption of the β2 Adrenergic Receptor Gene* , 1999, The Journal of Biological Chemistry.

[18]  M. Lohse,et al.  Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Lewis C. Cantley,et al.  The Role of Phosphoinositide 3-Kinase Lipid Products in Cell Function* , 1999, The Journal of Biological Chemistry.

[20]  J. Falck,et al.  Arrestin function in G protein‐coupled receptor endocytosis requires phosphoinositide binding , 1999, The EMBO journal.

[21]  E. Lakatta,et al.  Coupling of beta2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. , 1999, Circulation research.

[22]  CIBIS-II Investigators and Committees The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial , 1999, The Lancet.

[23]  R. Lefkowitz,et al.  Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. , 1998, Circulation.

[24]  T. McIntosh,et al.  The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. , 1998, The Journal of clinical investigation.

[25]  D. Rohrer Physiological consequences of β-adrenergic receptor disruption , 1998, Journal of Molecular Medicine.

[26]  Robert J. Lefkowitz,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[27]  Marc G. Caron,et al.  Control of Myocardial Contractile Function by the Level of β-Adrenergic Receptor Kinase 1 in Gene-targeted Mice* , 1998, The Journal of Biological Chemistry.

[28]  J. Ross,et al.  Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Lefkowitz,et al.  G protein-coupled receptor kinases. , 1998, Annual review of biochemistry.

[30]  G. Jennings,et al.  Adrenergic nervous system in heart failure. , 1997, The American journal of cardiology.

[31]  Robert J. Lefkowitz,et al.  Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A , 1997, Nature.

[32]  W. Koch,et al.  Mechanism of β-Adrenergic Receptor Desensitization in Cardiac Hypertrophy Is Increased β-Adrenergic Receptor Kinase* , 1997, The Journal of Biological Chemistry.

[33]  Australia. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease , 1997, The Lancet.

[34]  Minoru Hongo,et al.  MLP-Deficient Mice Exhibit a Disruption of Cardiac Cytoarchitectural Organization, Dilated Cardiomyopathy, and Heart Failure , 1997, Cell.

[35]  D. Clapham,et al.  G PROTEIN BETA GAMMA SUBUNITS , 1997 .

[36]  E. Lakatta,et al.  Transgenic manipulation of beta-adrenergic receptor kinase modifies cardiac myocyte contraction to norepinephrine. , 1997, The American journal of physiology.

[37]  M. Caron,et al.  Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  R. Lefkowitz,et al.  Receptor-specific in vivo desensitization by the G protein-coupled receptor kinase-5 in transgenic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Falck,et al.  A Functional Phosphatidylinositol 3,4,5-Trisphosphate/Phosphoinositide Binding Domain in the Clathrin Adaptor AP-2 α Subunit. IMPLICATIONS FOR THE ENDOCYTIC PATHWAY* , 1996, The Journal of Biological Chemistry.

[40]  F. Charpentier,et al.  Functional beta3-adrenoceptor in the human heart. , 1996, The Journal of clinical investigation.

[41]  J. Rossant,et al.  Mouse mutants and cardiac development: new molecular insights into cardiogenesis. , 1996, Circulation research.

[42]  B. Lowell,et al.  Targeted Disruption of the β3-Adrenergic Receptor Gene * , 1995, The Journal of Biological Chemistry.

[43]  R. Lefkowitz,et al.  Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. , 1995, Science.

[44]  R. Lefkowitz,et al.  Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. , 1994, Science.

[45]  J. Port,et al.  Reduced beta 1 receptor messenger RNA abundance in the failing human heart. , 1993, The Journal of clinical investigation.

[46]  S. Green,et al.  A polymorphism of the human beta 2-adrenergic receptor within the fourth transmembrane domain alters ligand binding and functional properties of the receptor. , 1993, The Journal of biological chemistry.

[47]  M. Böhm,et al.  Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. , 1993, Circulation.

[48]  O. Brodde Beta-adrenoceptors in cardiac disease. , 1993, Pharmacology & therapeutics.

[49]  M. Caron,et al.  Catecholamine receptors: structure, function, and regulation. , 1993, Recent progress in hormone research.

[50]  S. Chien,et al.  Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response , 1991, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[51]  J. Ross,et al.  Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Chien,et al.  Erratum: Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy (Proc. Natl. Acad. Sci. USA (September 1991) 88 (8277-8281)) , 1991 .

[53]  D. Levy,et al.  Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. , 1990, The New England journal of medicine.

[54]  W. Baumgartner,et al.  Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. , 1988, The Journal of clinical investigation.

[55]  A. Mark,et al.  Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. , 1986, Circulation.