Galactic bulge population II Cepheids in the VVV survey: Period-luminosity relations and a distance to the Galactic centre

We present the near-infrared observations of population II Cepheids in the Galactic bulge from VVV survey. We identify 340 population II Cepheids in the Galactic bulge from VVV survey based on their match with OGLE-III Catalogue. The single-epoch $JH$ and multi-epoch $K_s$ observations complement the accurate periods and optical $(VI)$ mean-magnitudes from OGLE. The sample consisting of BL Herculis and W Virginis subtypes is used to derive period-luminosity relations after correcting mean-magnitudes for the extinction. Our $K_s$-band period-luminosity relation, $K_s = -2.189(0.056)~[\log(P) - 1] + 11.187(0.032)$, is consistent with published work for BL Herculis and W Virginis variables in the Large Magellanic Cloud. We present a combined OGLE-III and VVV catalogue with periods, classification, mean magnitudes and extinction for 264 Galactic bulge population II Cepheids having good-quality $K_s$-band light curves. The absolute magnitudes for population II Cepheids and RR Lyraes calibrated using Gaia and Hubble Space Telescope parallaxes, together with calibrated magnitudes for Large Magellanic Cloud population II Cepheids, are used to obtain a distance to the Galactic center, $R_0=8.34\pm0.03{\mathrm{(stat.)}}\pm0.41{\mathrm{(syst.)}}$, which changes by $^{+ 0.05}_{-0.25}$ with different extinction laws. While noting the limitation of small number statistics, we find that the present sample of population II Cepheids in the Galactic bulge shows a nearly spheroidal spatial distribution, similar to metal-poor RR Lyrae variables. We do not find evidence of the inclined bar as traced by the metal-rich red-clump stars. The number density for population II Cepheids is more limited as compared to abundant RR Lyraes but they are bright and exhibit a wide range in period that provides a robust period-luminosity relation for an accurate estimate of the distance to the Galactic center.

[1]  M. Livio,et al.  THE FIRST DETECTION OF BLUE STRAGGLER STARS IN THE MILKY WAY BULGE , 2011, 1105.4176.

[2]  A. Gould,et al.  THE SPLIT RED CLUMP OF THE GALACTIC BULGE FROM OGLE-III , 2010, 1007.5065.

[3]  K. Kuijken,et al.  Hubble Space Telescope WFPC2 Proper Motions in Two Bulge Fields: Kinematics and Stellar Population of the Galactic Bulge , 2002, astro-ph/0207116.

[4]  Tatiana Muraveva,et al.  NEW NEAR-INFRARED PERIOD–LUMINOSITY–METALLICITY RELATIONS FOR RR LYRAE STARS AND THE OUTLOOK FOR GAIA , 2015, 1505.06001.

[5]  M. Schultheis,et al.  Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps , 2014, 1405.0503.

[6]  D. Minniti,et al.  Constraining Dust Extinction Properties via the VVV Survey , 2016, 1607.08623.

[7]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[8]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[9]  M. Zoccali,et al.  The 3D Structure of the Galactic Bulge , 2016, Publications of the Astronomical Society of Australia.

[10]  M. Catelán,et al.  VVV SURVEY NEAR-INFRARED PHOTOMETRY OF KNOWN BULGE RR LYRAE STARS: THE DISTANCE TO THE GALACTIC CENTER AND ABSENCE OF A BARRED DISTRIBUTION OF THE METAL-POOR POPULATION , 2013, 1309.5933.

[11]  O. Gerhard,et al.  Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.

[12]  A. Udalski,et al.  The distance to the Galactic Centre based on Population-II Cepheids and RR Lyrae stars , 2008, 0801.2652.

[13]  R. de Grijs,et al.  The VMC Survey - XIII : Type II Cepheids in the Large Magellanic Cloud , 2014, 1410.7817.

[14]  O. Szewczyk,et al.  The Araucaria Project: The distance to the Small Magellanic Cloud from near infrared photometry of Type~II Cepheids , 2010, 1007.4217.

[15]  M. Feast,et al.  Period–luminosity relations for type II Cepheids and their application , 2009, 0904.4701.

[16]  Toshihiko Tanabe,et al.  The period–luminosity relation for type II Cepheids in globular clusters , 2006, astro-ph/0606609.

[17]  M. Dolci,et al.  Near-Infrared Observations of RR Lyrae Variables in Galactic Globular Clusters. I. The Case of M92 , 2005, astro-ph/0503140.

[18]  George Wallerstein,et al.  The Cepheids of Population II and Related Stars , 2002 .

[19]  E. Marchetti,et al.  Stellar density profile and mass of the Milky Way Bulge from VVV data , 2015, 1510.07425.

[20]  Harinder P. Singh,et al.  LARGE MAGELLANIC CLOUD NEAR-INFRARED SYNOPTIC SURVEY. II. THE WESENHEIT RELATIONS AND THEIR APPLICATION TO THE DISTANCE SCALE , 2015, 1510.03682.

[21]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW IN THE J, H, AND Ks BANDS TOWARD THE GALACTIC CENTER , 2006, astro-ph/0601174.

[22]  M. J. Lehner,et al.  The macho project LMC variable star inventory. VII. The discovery of RV Tauri stars and new type II cepheids in the Large Magellanic Cloud , 1998 .

[23]  D. Minniti,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS - III. The first global photometric metallicity map of the Galactic bulge , 2013, 1302.0243.

[24]  M. Feast,et al.  Period-luminosity relations of type II Cepheids in the Magellanic Clouds , 2010, 1012.0098.

[25]  E. Pickering,et al.  Periods of 25 Variable Stars in the Small Magellanic Cloud. , 1912 .

[26]  Allan Sandage,et al.  Absolute Magnitude Calibrations of Population I and II Cepheids and Other Pulsating Variables in the Instability Strip of the Hertzsprung-Russell Diagram , 2006 .

[27]  M. Irwin,et al.  The age and structure of the Galactic bulge from Mira variables , 2015, 1510.03295.

[28]  Reinhard Genzel,et al.  An Update on Monitoring Stellar Orbits in the Galactic Center , 2016, 1611.09144.

[29]  D. Minniti,et al.  DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY , 2016, 1610.04689.

[30]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. VI. Age and abundance structure of the stellar populations in the central sub-kpc of the Milky Way , 2017, 1702.02971.

[31]  D. Minniti,et al.  MAPPING THE X-SHAPED MILKY WAY BULGE , 2011, 1107.5360.

[32]  C. D. Laney,et al.  A new LMC K-band distance from precision measurements of nearby red clump stars , 2011, 1109.4800.

[33]  Reinhard Genzel,et al.  The galactic center massive black hole and nuclear star cluster , 2010, 1006.0064.

[34]  D. Minniti,et al.  The GIRAFFE Inner Bulge Survey (GIBS) III. Metallicity distributions and kinematics of 26 Galactic bulge fields , 2016, 1610.09174.

[35]  G. Lewis,et al.  ARGOS - III. Stellar populations in the Galactic bulge of the Milky Way , 2012, 1212.1540.

[36]  M. Catelán,et al.  Properties of RR Lyrae stars in the inner regions of the Large Magellanic Cloud - III. Near-infrared study , 2009 .

[37]  D. Minniti,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS. I. The method and minor axis maps , 2011, 1107.5496.

[38]  J. Nemec,et al.  Period-luminosity-metallicity relations, pulsation modes, absolute magnitudes, and distances for population 2 variable stars , 1994 .

[39]  R. Poleski,et al.  DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS , 2014, 1412.4121.

[40]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[41]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[42]  V. Debattista,et al.  Reinforcing the link between the double red clump and the X-shaped bulge of the Milky Way , 2015, 1510.05943.

[43]  A. McWilliam,et al.  TWO RED CLUMPS AND THE X-SHAPED MILKY WAY BULGE , 2010, 1008.0519.

[44]  D. Minniti,et al.  The Giraffe Inner Bulge Survey (GIBS) II. Metallicity distributions and alpha element abundances at fixed Galactic latitude , 2015, 1508.02576.

[45]  Michael W. Feast,et al.  The Luminosities and Distance Scales of Type II Cepheid and RR Lyrae variables , 2008, 0803.0466.

[46]  R. Rich,et al.  Near-coeval formation of the Galactic bulge and halo inferred from globular cluster ages , 1995, Nature.

[47]  E. Schmidt,et al.  PHOTOMETRY OF TYPE II CEPHEID CANDIDATES FROM THE NORTHERN PART OF THE ALL SKY AUTOMATED SURVEY , 2009 .

[48]  D. Minniti,et al.  The inner Galactic bar traced by the VVV survey , 2011, 1110.0925.

[49]  M. Catelán,et al.  Mapping the outer bulge with RRab stars from the VVV Survey , 2016, 1604.01336.

[50]  Takahiro Nagayama,et al.  A Distinct Structure inside the Galactic Bar , 2005, astro-ph/0502058.

[51]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.

[52]  M. Schultheis,et al.  The Gaia-ESO Survey: metallicity and kinematic trends in the Milky Way bulge , 2014, 1408.4558.

[53]  M. Schultheis,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Galactic bulge studies , 2012, 1204.4004.

[54]  G. Zasowski,et al.  Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology , 2015, 1510.01321.

[55]  C. Babusiaux,et al.  The metallicity distribution of bulge clump giants in Baade’s window , 2011, 1107.5199.

[56]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[57]  Richard de Grijs,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? IV. THE GALACTIC CENTER , 2016, 1610.02457.

[58]  Stefano Casertano,et al.  Transiting extrasolar planetary candidates in the Galactic bulge , 2006, Nature.

[59]  V. Debattista,et al.  Stellar Ages through the Corners of the Boxy Bulge , 2013, 1309.4570.

[60]  M. Dall'Ora,et al.  Optical and Near-Infrared UBVRIJHK Photometry for the RR Lyrae Stars in the Nearby Globular Cluster M4 (NGC 6121) , 2014, 1406.7531.

[61]  L. Greggio,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2003 .

[62]  S. Ortolani,et al.  The metal content of bulge field stars from FLAMES-GIRAFFE spectra - I. Stellar parameters and iron abundances , 2008, 0805.1218.

[63]  Harinder P. Singh,et al.  On the variation of Fourier parameters for Galactic and LMC Cepheids at optical, near-infrared and mid-infrared wavelengths , 2014, 1412.4891.

[64]  Harinder P. Singh,et al.  Large Magellanic Cloud Near-infrared Synoptic Survey. IV. Leavitt Laws for Type II Cepheid Variables , 2017, 1702.00967.

[65]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[66]  M. Feast,et al.  A lack of classical Cepheids in the inner part of the Galactic disc , 2016, 1606.07943.