The High Energy X-ray Probe (HEX-P): the most powerful jets through the lens of a superb X-ray eye

A fraction of the active supermassive black holes at the centers of galaxies in our Universe are capable of launching extreme kiloparsec-long relativistic jets. These jets are known multiband (radio to $\gamma$-ray) and multimessenger (neutrino) emitters, and some of them have been monitored over several decades at all accessible wavelengths. However, many open questions remain unanswered about the processes powering these highly energetic phenomena. These jets intrinsically produce soft-to-hard X-ray emission that extends from $E\sim0.1\,\rm keV$ up to $E>100\,\rm keV$. Simultaneous broadband X-ray coverage, combined with excellent timing and imaging capabilities, is required to uncover the physics of jets. Indeed, truly simultaneous soft-to-hard X-ray coverage, in synergy with current and upcoming high-energy facilities (such as IXPE, COSI, CTAO, etc.) and neutrino detectors (e.g., IceCube), would enable us to disentangle the particle population responsible for the high-energy radiation from these jets. A sensitive hard X-ray survey ($F_{8-24\,\rm keV}<10^{-15}\,\rm erg~cm^{-2}~s^{-1}$) could unveil the bulk of their population in the early Universe. Acceleration and radiative processes responsible for the majority of their X-ray emission would be pinned down by microsecond timing capabilities at both soft and hard X-rays. Furthermore, imaging jet structures for the first time in the hard X-ray regime could unravel the origin of their high-energy emission. The proposed Probe-class mission concept High Energy X-ray Probe (HEX-P) combines all these required capabilities, making it the crucial next-generation X-ray telescope in the multi-messenger, time-domain era. HEX-P will be the ideal mission to unravel the science behind the most powerful accelerators in the universe.

[1]  J. Acosta-Pulido,et al.  Variability and evolution of the optical polarization of a sample of gamma-ray blazars , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  B. Ramsey,et al.  X-Ray Polarization of BL Lacertae in Outburst , 2023, The Astrophysical Journal Letters.

[3]  D. Fox,et al.  The Peculiar Variable X-Ray Spectrum of the Active Galactic Nucleus PKS 2005–489 , 2023, The Astrophysical Journal.

[4]  S. Meyer,et al.  Simultaneous Millimeter-wave, Gamma-Ray, and Optical Monitoring of the Blazar PKS 2326-502 during a Flaring State , 2023, The Astrophysical Journal Letters.

[5]  Xiaocan Li,et al.  First-principles-integrated Study of Blazar Synchrotron Radiation and Polarization Signatures from Magnetic Turbulence , 2023, The Astrophysical Journal.

[6]  G. Castignani,et al.  Black hole and galaxy co-evolution in radio-loud active galactic nuclei at z~0.3-4 , 2023, Astronomy &amp; Astrophysics.

[7]  K. Labrie,et al.  Identifying the 3FHL Catalog. VI. Results of the 2019 Gemini Optical Spectroscopy , 2022, The Astronomical Journal.

[8]  M. Georganopoulos,et al.  Offsets between X-Ray and Radio Components in X-Ray Jets: The AtlasX , 2022, The Astrophysical Journal Supplement Series.

[9]  Y. Kovalev,et al.  Growing evidence for high-energy neutrinos originating in radio blazars , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  I. C. Rea,et al.  Evidence for neutrino emission from the nearby active galaxy NGC 1068. , 2022, Science.

[11]  V. Jithesh,et al.  Study of X-Ray Intraday Variability of HBL Blazars Based on Observations Obtained with XMM-Newton , 2022, The Astrophysical Journal.

[12]  J. Prieto,et al.  Optical/γ-ray blazar flare correlations: understanding the high-energy emission process using ASAS-SN and Fermi light curves , 2022, Monthly Notices of the Royal Astronomical Society.

[13]  G. Madejski,et al.  BASS. XXXIII. Swift-BAT Blazars and Their Jets through Cosmic Time , 2022, The Astrophysical Journal.

[14]  A. Rau,et al.  Revealing High-z Fermi-LAT BL Lacs Using Swift and SARA Data with Photometric Analysis , 2022, The Astrophysical Journal.

[15]  L. A. Antonelli,et al.  The X-Ray Polarization View of Mrk 421 in an Average Flux State as Observed by the Imaging X-Ray Polarimetry Explorer , 2022, The Astrophysical Journal Letters.

[16]  S. Bongiorno,et al.  Polarized blazar X-rays imply particle acceleration in shocks , 2022, Nature.

[17]  L. A. Antonelli,et al.  Limits on X-Ray Polarization at the Core of Centaurus A as Observed with the Imaging X-Ray Polarimetry Explorer , 2022, The Astrophysical Journal.

[18]  M. Ajello,et al.  Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories , 2022, The Astrophysical Journal Letters.

[19]  A. Foster,et al.  New Identifications and Multiwavelength Properties of Extragalactic Fermi Gamma-Ray Sources in the SPT-SZ Survey Field , 2022, The Astrophysical Journal.

[20]  M. Ostrowski,et al.  X-ray intraday variability of the TeV blazar Mrk 421 with {\it XMM-Newton} , 2022, 2206.02159.

[21]  P. Giommi,et al.  The first hard X-ray spectral catalogue of Blazars observed by NuSTAR , 2022, 2205.05089.

[22]  A. L. Peirson,et al.  Testing High-energy Emission Models for Blazars with X-Ray Polarimetry , 2022, The Astrophysical Journal.

[23]  C. Boisson,et al.  ExHaLe-jet: An extended hadro-leptonic jet model for blazars. I. Code description and initial results , 2022, 2203.07956.

[24]  A. Lähteenmäki,et al.  Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz during 10 yr of the VLBA-BU-BLAZAR Program , 2022, The Astrophysical Journal Supplement Series.

[25]  H. Rottgering,et al.  The discovery of a radio galaxy of at least 5 Mpc , 2022, Astronomy & Astrophysics.

[26]  A. Caccianiga,et al.  The evolution of the heaviest super-massive black-holes in jetted AGNs , 2022, Monthly Notices of the Royal Astronomical Society.

[27]  Jarrett L. Johnson,et al.  A Simple Condition for Sustained Super-Eddington Black Hole Growth , 2022, 2201.11757.

[28]  D. Grupe,et al.  MOMO. IV. The Complete Swift X-Ray and UV/Optical Light Curve and Characteristic Variability of the Blazar OJ 287 during the Last Two Decades , 2021, The Astrophysical Journal.

[29]  M. Zacharias Studying the Influence of External Photon Fields on Blazar Spectra Using a One-Zone Hadro-Leptonic Time-Dependent Model , 2021, Physics.

[30]  M. Georganopoulos,et al.  Circumnuclear Dust in AP Librae and the Source of Its VHE Emission , 2021, The Astrophysical Journal.

[31]  A. Zech,et al.  Electron-proton co-acceleration on relativistic shocks in extreme-TeV blazars , 2021, Astronomy & Astrophysics.

[32]  P. Giommi,et al.  X-ray spectra, light curves and SEDs of blazars frequently observed by Swift , 2021, Monthly Notices of the Royal Astronomical Society.

[33]  Norbert Meidinger,et al.  Enhanced simulations on the Athena/Wide Field Imager instrumental background , 2021, Journal of Astronomical Telescopes, Instruments, and Systems.

[34]  L. A. Antonelli,et al.  Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017 , 2021, Astronomy & Astrophysics.

[35]  A. Moretti,et al.  The impact of the CMB on the evolution of high-z blazars , 2021, 2106.01953.

[36]  Jie-Shuang Wang,et al.  Particle acceleration in shearing flows: the case for large-scale jets , 2021, 2105.08600.

[37]  S. Ganesh,et al.  X-Ray Observations of 1ES 1959+650 in Its High-activity State in 2016–2017 with AstroSat and Swift , 2021, The Astrophysical Journal.

[38]  A. Kaur,et al.  Identifying the 3FHL Catalog. V. Results of the CTIO-COSMOS Optical Spectroscopy Campaign 2019 , 2021, The Astrophysical Journal Supplement Series.

[39]  P. Mohan,et al.  Breaks in the X-Ray Spectra of High-redshift Blazars and the Intervening Medium , 2021, 2104.11094.

[40]  A. Merloni,et al.  The eROSITA Final Equatorial-Depth Survey (eFEDS) , 2021, Astronomy & Astrophysics.

[41]  T. Sbarrato Big and Young Supermassive Black Holes in the Early Universe , 2021, Galaxies.

[42]  Xiaocan Li,et al.  First-principles Prediction of X-Ray Polarization from Magnetic Reconnection in High-frequency BL Lacertae Objects , 2021, The Astrophysical Journal.

[43]  Norbert Meidinger,et al.  Development status of the wide field imager instrument for Athena , 2020, Astronomical Telescopes + Instrumentation.

[44]  A. Readhead,et al.  RoboPol: AGN polarimetric monitoring data , 2020, Monthly Notices of the Royal Astronomical Society.

[45]  R. Ferrazzoli The Imaging X-ray Polarimetry Explorer (IXPE) , 2020, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[46]  Adrian T. Lee,et al.  CMB-S4: Forecasting Constraints on Primordial Gravitational Waves , 2020, The Astrophysical Journal.

[47]  M. Georganopoulos,et al.  The relativistic jet dichotomy and the end of the blazar sequence , 2020, 2007.12661.

[48]  L. Ho,et al.  Radio Activity of Supermassive Black Holes with Extremely High Accretion Rates , 2020, The Astrophysical Journal.

[49]  A. Keivani,et al.  Multimessenger observations of counterparts to IceCube-190331A , 2020, 2007.10193.

[50]  B. Lott,et al.  Blazars at the Cosmic Dawn , 2020, The Astrophysical Journal.

[51]  L. Oakes,et al.  Resolving acceleration to very high energies along the jet of Centaurus A , 2020, Nature.

[52]  E. Pueschel,et al.  VERITAS Discovery of VHE Emission from the Radio Galaxy 3C 264: A Multiwavelength Study , 2020, The Astrophysical Journal.

[53]  A. Moretti,et al.  The first blazar observed at z > 6 , 2020, Astronomy & Astrophysics.

[54]  E. Pueschel,et al.  A Decade of Multiwavelength Observations of the TeV Blazar 1ES 1215+303: Extreme Shift of the Synchrotron Peak Frequency and Long-term Optical–Gamma-Ray Flux Increase , 2020, The Astrophysical Journal.

[55]  E. Pueschel,et al.  Progress in unveiling extreme particle acceleration in persistent astrophysical jets , 2020, 2001.09222.

[56]  D. Hartmann,et al.  NuSTAR Observations and Multiwavelength Modeling of the High-redshift BL Lacertae Object 4FGL J2146.5-1344 , 2020, The Astrophysical Journal.

[57]  D. Gasparrini,et al.  NuSTAR Perspective on High-redshift MeV Blazars , 2020, The Astrophysical Journal.

[58]  S. Troitsky,et al.  Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies , 2020, The Astrophysical Journal.

[59]  M. Landoni,et al.  Optical spectroscopic observations of gamma-ray blazar candidates. X. Results from the 2018–2019 SOAR and OAN-SPM observations of blazar candidates of uncertain type , 2020, Astrophysics and Space Science.

[60]  N. Padmanabhan,et al.  Accretion History of AGNs. II. Constraints on AGN Spectral Parameters Using the Cosmic X-Ray Background , 2019, The Astrophysical Journal.

[61]  L. Costamante TeV-peaked candidate BL Lac objects , 2019, Monthly Notices of the Royal Astronomical Society.

[62]  A. Keivani,et al.  Multi-epoch Modeling of TXS 0506+056 and Implications for Long-term High-energy Neutrino Emission , 2019, The Astrophysical Journal.

[63]  K. Murase,et al.  A Neutral Beam Model for High-energy Neutrino Emission from the Blazar TXS 0506+056 , 2019, The Astrophysical Journal.

[64]  A. Moretti,et al.  X-ray properties of z > 4 blazars , 2019, Monthly Notices of the Royal Astronomical Society.

[65]  Eric Burns,et al.  The Compton Spectrometer and Imager , 2019, 1908.04334.

[66]  Philippe Peille,et al.  SIXTE: a generic X-ray instrument simulation toolkit , 2019, Astronomy & Astrophysics.

[67]  M. Kadler,et al.  Search for High-redshift Blazars with Fermi/LAT , 2019, Proceedings of 7th Annual Conference on High Energy Astrophysics in Southern Africa — PoS(HEASA2019).

[68]  India.,et al.  Study of the variable broadband emission of Markarian 501 during the most extreme Swift X-ray activity , 2019, Astronomy & Astrophysics.

[69]  F. Harrison,et al.  BAT AGN Spectroscopic Survey. XVI. General Physical Characteristics of BAT Blazars , 2019, The Astrophysical Journal.

[70]  L. Oakes,et al.  Constraints on the emission region of 3C 279 during strong flares in 2014 and 2015 through VHE γ-ray observations with H.E.S.S. , 2019, Astronomy & Astrophysics.

[71]  G. Tagliaferri,et al.  A NuSTAR view of powerful γ-ray loud blazars , 2019, Astronomy & Astrophysics.

[72]  F. Schinzel,et al.  The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope , 2019, The Astrophysical Journal.

[73]  N. Masetti,et al.  Optical spectroscopic observations of gamma-ray blazar candidates. IX. Optical archival spectra and further observations from SOAR and OAGH , 2019, Astrophysics and Space Science.

[74]  P. Giommi,et al.  Open Universe for Blazars: a new generation of astronomical products based on 14 years ofSwift-XRT data , 2019, Astronomy & Astrophysics.

[75]  D. Hartmann,et al.  A GeV–TeV Measurement of the Extragalactic Background Light , 2019, The Astrophysical Journal.

[76]  Hui Li,et al.  Probing the Emission Mechanism and Magnetic Field of Neutrino Blazars with Multiwavelength Polarization Signatures , 2019, The Astrophysical Journal.

[77]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[78]  M. Ajello,et al.  Identifying the 3FHL Catalog. III. Results of the CTIO-COSMOS Optical Spectroscopy Campaign , 2019, The Astrophysical Journal Supplement Series.

[79]  T. B. Watson,et al.  Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube , 2019, The Astrophysical Journal.

[80]  P. Giommi,et al.  TXS 0506+056, the first cosmic neutrino source, is not a BL Lac , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[81]  M. Boettcher Progress in Multi-Wavelength and Multi-Messenger Observations of Blazars and Theoretical Challenges , 2019, Galaxies.

[82]  I. R. Losada,et al.  Detection of a Gamma-Ray Flare from the High-redshift Blazar DA 193 , 2018, The Astrophysical Journal.

[83]  M. Boettcher,et al.  Cascading Constraints from Neutrino-emitting Blazars: The Case of TXS 0506+056 , 2018, The Astrophysical Journal.

[84]  M. Razzano,et al.  A gamma-ray determination of the Universe’s star formation history , 2018, Science.

[85]  M. Lucchini,et al.  Breaking degeneracy in jet dynamics: multi-epoch joint modelling of the BL Lac PKS 2155–304 , 2018, Monthly Notices of the Royal Astronomical Society.

[86]  K. Mannheim,et al.  Fermi/LAT counterparts of IceCube neutrinos above 100 TeV , 2018, Astronomy & Astrophysics.

[87]  G. Garmire,et al.  Investigating the X-ray enhancements of highly radio-loud quasars at z > 4 , 2018, Monthly Notices of the Royal Astronomical Society.

[88]  D. Hooper,et al.  Active galactic nuclei and the origin of IceCube's diffuse neutrino flux , 2018, Journal of Cosmology and Astroparticle Physics.

[89]  Yongquan Xue,et al.  Systematic Investigation of X-Ray Spectral Variability of TeV Blazars during Flares in the RXTE Era , 2018, The Astrophysical Journal.

[90]  A. Kaur,et al.  Identifying the 3FHL Catalog. II. Results of the KOSMOS Optical Spectroscopy Campaign , 2018, The Astronomical Journal.

[91]  India.,et al.  Extreme HBL behavior of Markarian 501 during 2012 , 2018, Astronomy & Astrophysics.

[92]  V. Hess On the Observations of the Penetrating Radiation during Seven Balloon Flights , 2018, 1808.02927.

[93]  L. Sironi,et al.  Radiative signatures of plasmoid-dominated reconnection in blazar jets , 2018, Monthly Notices of the Royal Astronomical Society.

[94]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[95]  I. Collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[96]  J. DeLaunay,et al.  A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration , 2018, The Astrophysical Journal.

[97]  K. Murase,et al.  Blazar Flares as an Origin of High-energy Cosmic Neutrinos? , 2018, The Astrophysical Journal.

[98]  Shan Gao,et al.  Modelling the coincident observation of a high-energy neutrino and a bright blazar flare , 2018, Nature Astronomy.

[99]  N. Liao,et al.  Fermi-LAT Detection of a Transient γ-Ray Source in the Direction of a Distant Blazar B3 1428+422 at z = 4.72 , 2018, The Astrophysical Journal.

[100]  Jpl,et al.  An X-Ray Imaging Survey of Quasar Jets: The Complete Survey , 2018, 1802.04714.

[101]  K. Schawinski,et al.  The 105-Month Swift-BAT All-sky Hard X-Ray Survey , 2018, 1801.01882.

[102]  G. Tagliaferri,et al.  The NuSTAR view on hard-TeV BL Lacs , 2017, 1711.06282.

[103]  G. Bhatta,et al.  Hard X-ray properties of NuSTAR blazars , 2017, Astronomy & Astrophysics.

[104]  M. Georganopoulos,et al.  Fermi Non-detections of Four X-Ray Jet Sources and Implications for the IC/CMB Mechanism , 2017, 1710.04250.

[105]  L. A. Antonelli,et al.  Science with the Cherenkov Telescope Array , 2017, 1709.07997.

[106]  P. Giommi,et al.  Active galactic nuclei: what’s in a name? , 2017, The Astronomy and Astrophysics Review.

[107]  D. Croton,et al.  The many lives of active galactic nuclei–II: The formation and evolution of radio jets and their impact on galaxy evolution , 2017, 1706.06595.

[108]  M. Lister,et al.  MOJAVE - XIV. Shapes and opening angles of AGN jets , 2017, 1705.02888.

[109]  F. Aharonian,et al.  Scenarios for Ultrafast Gamma-Ray Variability in AGN , 2017, Proceedings of Accretion Processes in Cosmic Sources – II — PoS(APCS2018).

[110]  P. Schady,et al.  High-redshift Blazars through NuSTAR Eyes , 2017, 1703.10657.

[111]  The Event Horizon Telescope Collaboration,et al.  Gamma-ray Blazars Within the First 2 Billion Years , 2017, 1702.04006.

[112]  G. Ghisellini,et al.  The Fermi blazar sequence , 2017, 1702.02571.

[113]  A. Finoguenov,et al.  The Chandra COSMOS Legacy Survey: Energy Spectrum of the Cosmic X-Ray Background and Constraints on Undetected Populations , 2017, 1702.01660.

[114]  M. Zwaan,et al.  New ALMA and Fermi/LAT Observations of the Large-scale Jet of PKS 0637−752 Strengthen the Case Against the IC/CMB Model , 2017, 1702.00015.

[115]  L. A. Antonelli,et al.  A SEARCH FOR SPECTRAL HYSTERESIS AND ENERGY-DEPENDENT TIME LAGS FROM X-RAY AND TeV GAMMA-RAY OBSERVATIONS OF Mrk 421 , 2016, The Astrophysical Journal.

[116]  M. Aller,et al.  X-RAY FLARING ACTIVITY OF MRK 421 IN THE FIRST HALF OF 2013 , 2016 .

[117]  Shan Gao,et al.  On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars , 2016, 1610.05306.

[118]  N. Masetti,et al.  The gamma-ray blazar quest: new optical spectra, state of art and future perspectives , 2016, 1609.09502.

[119]  M. Volonteri,et al.  Hyperaccreting black holes in galactic nuclei , 2016, 1609.07137.

[120]  M. Sikora,et al.  Gamma-Ray Observations of Active Galactic Nuclei , 2016 .

[121]  J. Chiang,et al.  FIRST NuSTAR OBSERVATIONS OF THE BL LAC-TYPE BLAZAR PKS 2155-304: CONSTRAINTS ON THE JET CONTENT AND DISTRIBUTION OF RADIATING PARTICLES , 2016, 1609.02203.

[122]  G. Vasilopoulos,et al.  The TeV emission of Ap Librae: a hadronic interpretation and prospects for CTA , 2016, 1608.07300.

[123]  N. Masetti,et al.  Looking for blazars in a sample of unidentified high-energy emitting Fermi sources , 2016, 1608.05429.

[124]  A. Falcone,et al.  Very high energy outburst of Markarian 501 in May 2009 , 2016, 1608.01569.

[125]  M. Böttcher,et al.  RADIATION AND POLARIZATION SIGNATURES OF THE 3D MULTIZONE TIME-DEPENDENT HADRONIC BLAZAR MODEL , 2016, 1607.06491.

[126]  D. Thompson,et al.  MINUTE-TIMESCALE >100 MeV γ-RAY VARIABILITY DURING THE GIANT OUTBURST OF QUASAR 3C 279 OBSERVED BY FERMI-LAT IN 2015 JUNE , 2016, The Astrophysical Journal.

[127]  K. Nandra,et al.  Second ROSAT all-sky survey (2RXS) source catalogue , 2016, 1609.09244.

[128]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES , 2016, 1609.05212.

[129]  J. A. Zensus,et al.  First 3 mm-VLBI imaging of the two-sided jet in Cygnus A - Zooming into the launching region , 2016, 1603.04221.

[130]  S. Wagner,et al.  The extended jet of AP Librae: Origin of the very high-energy gamma-ray emission? , 2016, 1602.03430.

[131]  D. Thompson,et al.  Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event , 2016, Nature Physics.

[132]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. V. TNG, KPNO, AND OAN OBSERVATIONS OF BLAZAR CANDIDATES OF UNCERTAIN TYPE IN THE NORTHERN HEMISPHERE , 2016, 1609.04829.

[133]  Paul S. Smith,et al.  Multiwavelength Study of Quiescent States of Mrk 421 with Unprecedented Hard X-Ray Coverage Provided by NuSTAR in 2013 , 2015, 1512.02235.

[134]  F. Christensen,et al.  Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR , 2015, 1510.08849.

[135]  G. Cotter,et al.  New constraints on the structure and dynamics of black hole jets , 2015, 1508.00567.

[136]  M.-H. A. Huang,et al.  Performance of two Askaryan Radio Array stations and first results in the search for ultrahigh energy neutrinos , 2015, 1507.08991.

[137]  Tum,et al.  A simplified view of blazars: the neutrino background , 2015, 1506.09135.

[138]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. IV. RESULTS OF THE 2014 FOLLOW-UP CAMPAIGN , 2015, 1503.05196.

[139]  Berkeley,et al.  NuSTAR AND MULTIFREQUENCY STUDY OF THE TWO HIGH-REDSHIFT BLAZARS S5 0836+710 AND PKS 2149–306 , 2015, 1503.04848.

[140]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF γ-RAY BLAZAR CANDIDATES. III. THE 2013/2014 CAMPAIGN IN THE SOUTHERN HEMISPHERE , 2015, 1503.04805.

[141]  F. Guo,et al.  POLARIZATION SWINGS REVEAL MAGNETIC ENERGY DISSIPATION IN BLAZARS , 2015, 1502.07825.

[142]  Paolo Giommi,et al.  The 5th edition of the Roma-BZCAT. A short presentation , 2015, 1502.07755.

[143]  Xiaohui Fan,et al.  An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30 , 2015, Nature.

[144]  Athens,et al.  TIME DEPENDENT HADRONIC MODELING OF FLAT SPECTRUM RADIO QUASARS , 2015, 1502.03950.

[145]  The Fermi-LAT Collaboration Fermi Large Area Telescope Third Source Catalog , 2015, 1501.02003.

[146]  C. Boisson,et al.  A hadronic origin for ultra-high-frequency-peaked BL Lac objects , 2014, 1411.5968.

[147]  G. Ghisellini,et al.  The power of relativistic jets is larger than the luminosity of their accretion disks , 2014, Nature.

[148]  A. Mastichiadis,et al.  Bethe–Heitler emission in BL Lacs: filling the gap between X-rays and γ-rays , 2014, 1411.1908.

[149]  E. Pino,et al.  THE ROLE OF FAST MAGNETIC RECONNECTION ON THE RADIO AND GAMMA-RAY EMISSION FROM THE NUCLEAR REGIONS OF MICROQUASARS AND LOW LUMINOSITY AGNs , 2014, 1410.3454.

[150]  T. Alexander,et al.  Rapid growth of seed black holes in the early universe by supra-exponential accretion , 2014, Science.

[151]  D. Thompson,et al.  TANAMI Blazars in the IceCube PeV Neutrino Fields , 2014, 1406.0645.

[152]  C. Dermer,et al.  Diffuse Neutrino Intensity from the Inner Jets of Active Galactic Nuclei: Impacts of External Photon Fields and the Blazar Sequence , 2014, 1403.4089.

[153]  M. Watson,et al.  TOWARD THE STANDARD POPULATION SYNTHESIS MODEL OF THE X-RAY BACKGROUND: EVOLUTION OF X-RAY LUMINOSITY AND ABSORPTION FUNCTIONS OF ACTIVE GALACTIC NUCLEI INCLUDING COMPTON-THICK POPULATIONS , 2014, 1402.1836.

[154]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF BLAZARS AND γ-RAY BLAZAR CANDIDATES IN THE SLOAN DIGITAL SKY SURVEY DATA RELEASE NINE , 2014, 1503.03868.

[155]  M. Eracleous,et al.  Spectral Models for Low-luminosity Active Galactic Nuclei in LINERs: The Role of Advection-dominated Accretion and Jets , 2013, 1312.1982.

[156]  A. Marscher TURBULENT, EXTREME MULTI-ZONE MODEL FOR SIMULATING FLUX AND POLARIZATION VARIABILITY IN BLAZARS , 2013, 1311.7665.

[157]  N. Masetti,et al.  OPTICAL SPECTROSCOPIC OBSERVATIONS OF γ-RAY BLAZAR CANDIDATES. I. PRELIMINARY RESULTS , 2013, 1404.5211.

[158]  P. Schady,et al.  THE COSMIC EVOLUTION OF FERMI BL LACERTAE OBJECTS , 2013, 1310.0006.

[159]  O. Tibolla,et al.  DISCOVERY OF AN EXTENDED X-RAY JET IN AP LIBRAE , 2013, 1309.6893.

[160]  P. Giommi,et al.  NuSTAR DETECTION OF THE BLAZAR B2 1023+25 AT REDSHIFT 5.3 , 2013, 1309.3280.

[161]  Joern Wilms,et al.  The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission , 2013 .

[162]  Munchen,et al.  Rapid and multiband variability of the TeV bright active nucleus of the galaxy IC 310 , 2013, 1305.5147.

[163]  R. Gilli The cosmic X-ray background: abundance and evolution of hidden black holes , 2013, 1304.3665.

[164]  A. Prakash,et al.  LEPTONIC AND HADRONIC MODELING OF FERMI-DETECTED BLAZARS , 2013, 1304.0605.

[165]  W. Benbow,et al.  Active Galactic Nuclei under the scrutiny of CTA , 2013, 1304.3024.

[166]  P. Giommi,et al.  A simplified view of blazars: the γ-ray case , 2013, 1302.4331.

[167]  William W. Zhang,et al.  THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION , 2013, Astronomical Telescopes and Instrumentation.

[168]  R. Romani,et al.  SPECTROSCOPY OF THE LARGEST EVER γ-RAY-SELECTED BL LAC SAMPLE , 2013, 1301.0323.

[169]  M. V. Fernandes,et al.  Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S. , 2012, 1212.3409.

[170]  D. Thompson,et al.  The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars , 2012, Science.

[171]  D. Giannios Reconnection-driven plasmoids in blazars: fast flares on a slow envelope , 2012, 1211.0296.

[172]  N. Gehrels,et al.  SDSS J102623.61+254259.5: the second most distant blazar at z = 5.3 , 2012, 1208.3467.

[173]  G. Werner,et al.  BEAMING AND RAPID VARIABILITY OF HIGH-ENERGY RADIATION FROM RELATIVISTIC PAIR PLASMA RECONNECTION , 2012, 1205.3210.

[174]  G. Ghisellini,et al.  Blue Fermi flat spectrum radio quasars , 2012, 1205.0808.

[175]  D. A. Kann,et al.  BL Lacertae objects beyond redshift 1.3 – UV-to-NIR photometry and photometric redshift for Fermi/LAT blazars , 2011, 1112.0025.

[176]  P. Giommi,et al.  A simplified view of blazars: clearing the fog around long‐standing selection effects , 2011, 1110.4706.

[177]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[178]  M. Irwin,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[179]  F. Aharonian,et al.  RAPID TeV VARIABILITY IN BLAZARS AS A RESULT OF JET–STAR INTERACTION , 2010, 1012.1787.

[180]  Frank Rieger,et al.  VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87? , 2010, 1011.5319.

[181]  G. Richards,et al.  A CATALOG OF QUASAR PROPERTIES FROM SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 , 2010, 1006.5178.

[182]  Peng Zhang,et al.  Discovery of a high confidence soft lag from an X-ray flare of Markarian 421 , 2010, 1003.5033.

[183]  P. Giommi,et al.  THE SPECTRAL ENERGY DISTRIBUTION OF FERMI BRIGHT BLAZARS , 2009, The Astrophysical Journal.

[184]  A. R. Bazer-Bachi,et al.  Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy , 2009, Science.

[185]  A. R. Bazer-Bachi,et al.  Simultaneous multiwavelength observations of the second exceptional gamma-ray flare of PKS 2155-304 in July 2006 , 2009, 0906.2002.

[186]  J. Chiang,et al.  THE EVOLUTION OF SWIFT/BAT BLAZARS AND THE ORIGIN OF THE MeV BACKGROUND , 2009, 0905.0472.

[187]  M. Elvis,et al.  THE FIFTH DATA RELEASE SLOAN DIGITAL SKY SURVEY/XMM-NEWTON QUASAR SURVEY , 2009, 0905.0496.

[188]  HESS Collaboration F. Aharonian,et al.  DISCOVERY OF VERY HIGH ENERGY γ-RAY EMISSION FROM CENTAURUS A WITH H.E.S.S. , 2009, 0903.1582.

[189]  M. Perri,et al.  Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission , 2009, 0901.4124.

[190]  A. Lahteenmaki,et al.  Doppler factors, Lorentz factors and viewing angles for quasars, BL Lacertae objects and radio galaxies , 2008, 0811.4278.

[191]  Bernadetta Devecchi,et al.  FORMATION OF THE FIRST NUCLEAR CLUSTERS AND MASSIVE BLACK HOLES AT HIGH REDSHIFT , 2008, 0810.1057.

[192]  C. B. Markwardt,et al.  Cosmic X-Ray Background and Earth Albedo Spectra with Swift BAT , 2008, 0808.3377.

[193]  T. Hovatta,et al.  Blazar sequence – an artefact of Doppler boosting , 2008, 0803.0654.

[194]  Z. Kuncic,et al.  Jet enhanced accretion growth of supermassive black holes , 2008, 0802.0902.

[195]  G. Ghisellini,et al.  Rapid variability in TeV blazars: the case of PKS 2155—304 , 2008, 0801.2569.

[196]  University College Dublin,et al.  Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-Ray/TeV Correlated Variability , 2007, 0710.4138.

[197]  Martin J. Rees,et al.  Implications of very rapid TeV variability in blazars , 2007, 0709.0540.

[198]  F. Aharonian,et al.  GLAST answers about high‐energy peaked BL Lacs: double‐humped γ‐ray peak and extreme accelerators ? , 2007 .

[199]  A. R. Bazer-Bachi,et al.  An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155–304 , 2007, 0706.0797.

[200]  Paul S. Smith,et al.  Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior , 2007, 0705.4273.

[201]  G. Tagliaferri,et al.  Low-Energy Cutoffs and Hard X-Ray Spectra in High-z Radio-loud Quasars: The Suzaku View of RBS 315 , 2007, 0705.0234.

[202]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[203]  A. Fabian,et al.  Bulk Comptonization spectra in blazars , 2006, astro-ph/0611439.

[204]  A. Marscher,et al.  Relativistic Jets in Active Galactic Nuclei , 2006 .

[205]  D. Harris,et al.  X-Ray Emission from Extragalactic Jets , 2006, astro-ph/0607228.

[206]  A. Treves,et al.  Multiwavelength Observations of the BL Lacertae Object PKS 2155–304 with XMM-Newton , 2006, astro-ph/0607138.

[207]  Cambridge,et al.  Supermassive black hole formation during the assembly of pre-galactic discs , 2006, astro-ph/0606159.

[208]  C. Urry,et al.  Shedding New Light on the 3C 273 Jet with the Spitzer Space Telescope , 2006, astro-ph/0605530.

[209]  D. Harris,et al.  New Chandra Observations of the Jet in 3C 273. I. Softer X-Ray than Radio Spectra and the X-Ray Emission Mechanism , 2006, astro-ph/0605529.

[210]  M. Rees,et al.  Formation of supermassive black holes by direct collapse in pre-galactic haloes , 2006, astro-ph/0602363.

[211]  M. Hardcastle Testing the beamed inverse-Compton model for jet X-ray emission: velocity structure and deceleration , 2005, astro-ph/0511511.

[212]  M. Jarvis,et al.  Evidence that powerful radio jets have a profound influence on the evolution of galaxies , 2004, astro-ph/0409687.

[213]  Felix Aharonian,et al.  Very High Energy Cosmic Gamma Radiation: A Crucial Window on the Extreme Universe , 2004 .

[214]  C. Dermer,et al.  Synchrotron versus Compton Interpretations for Extended X-Ray Jets , 2004, astro-ph/0402647.

[215]  P. Coppi,et al.  Multiwavelength Observations of Strong Flares from the TeV Blazar 1ES 1959+650 , 2003, astro-ph/0310158.

[216]  L. Costamante A brief (blazar oriented) overview on topics for multi-wavelength observations with TeV photons. , 2003, astro-ph/0308026.

[217]  M. Sikora,et al.  High-Energy Gamma Rays from FR I Jets , 2003, astro-ph/0306251.

[218]  U. Potsdam,et al.  The HRX-BL Lac sample - Evolution of BL Lac objects ? , 2003, astro-ph/0302242.

[219]  T. Stanev,et al.  BL Lac objects in the synchrotron proton blazar model , 2002, astro-ph/0206164.

[220]  K. Omukai,et al.  First Stars, Very Massive Black Holes, and Metals , 2001, astro-ph/0111341.

[221]  V. Narayanan,et al.  A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6 , 2001, astro-ph/0108063.

[222]  E. Palazzi,et al.  Theoretical Implications from the Spectral Evolution of Markarian 501 Observed with BeppoSAX , 2001 .

[223]  P. Giommi,et al.  The 0.1-200 keV spectrum of the blazar PKS 2005-489 during an active state , 2000, astro-ph/0012503.

[224]  Edinburgh,et al.  Pmn j0525-3343: soft x-ray spectral flattening in a blazar at z=4.4 , 2000, astro-ph/0011566.

[225]  C. Urry,et al.  The X-Ray Jet of PKS 0637–752: Inverse Compton Radiation from the Cosmic Microwave Background? , 2000, astro-ph/0007441.

[226]  S. Virani,et al.  The Chandra X-Ray Observatory Resolves the X-Ray Morphology and Spectra of a Jet in PKS 0637–752 , 2000, astro-ph/0005227.

[227]  D. A. Schwartz,et al.  Structure of the X-Ray Emission from the Jet of 3C 273 , 2000, astro-ph/0012162.

[228]  H. Rottgering,et al.  Radio galaxies with a 'double-double morphology' - I. Analysis of the radio properties and evidence for interrupted acti , 1999, astro-ph/9912141.

[229]  E. Pian,et al.  The concave X-ray spectrum of the blazar ON 231: the signature of intermediate BL Lacertae objects , 1999, astro-ph/9912055.

[230]  Tagliaferri,et al.  Simultaneous X-Ray and TeV Observations of a Rapid Flare from Markarian 421 , 1999, The Astrophysical journal.

[231]  U. Cambridge,et al.  Quasars and galaxy formation , 1999, astro-ph/9907335.

[232]  E. Pian,et al.  The blazar PKS 0528+134: new results from BeppoSAX observations , 1999, astro-ph/9906165.

[233]  A. Mastichiadis,et al.  Variability patterns of synchrotron and inverse Compton emission in blazars , 1999 .

[234]  G. Ghisellini MeV synchrotron BL Lacs , 1998, astro-ph/9812419.

[235]  G. Ghisellini Extreme blazars , 1998, astro-ph/9812202.

[236]  T. Takahashi,et al.  High-Energy Emission from the TeV Blazar Markarian 501 during Multiwavelength Observations in 1996 , 1998, astro-ph/9811014.

[237]  A. Comastri,et al.  A theoretical unifying scheme for gamma-ray bright blazars , 1998, astro-ph/9807317.

[238]  Italy.,et al.  A unifying view of the spectral energy distributions of blazars , 1998, astro-ph/9804103.

[239]  A. Mastichiadis,et al.  Particle acceleration and synchrotron emission in blazar jets , 1998, astro-ph/9801265.

[240]  Paolo Giommi,et al.  BeppoSAX Observations of Unprecedented Synchrotron Activity in the BL Lacertae Object Markarian 501 , 1997, astro-ph/9710331.

[241]  Paul S. Smith,et al.  Multiwavelength Monitoring of the BL Lacertae Object PKS 2155–304 in 1994 May. III. Probing the Inner Jet through Multiwavelength Correlations , 1997, astro-ph/9704194.

[242]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[243]  C. Dermer On the Beaming Statistics of Gamma-Ray Sources , 1995 .

[244]  G. Ghisellini,et al.  Gamma-ray-loud blazars and beaming , 1995 .

[245]  Martin J. Rees,et al.  Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? , 1994 .

[246]  K. Mannheim The Proton Blazar , 1993, astro-ph/9302006.

[247]  T. Stanev,et al.  Neutrinos from flat-spectrum radio quasars , 1992 .

[248]  R. Schlickeiser,et al.  High-energy gamma radiation from extragalactic radio sources , 1992 .

[249]  Sommers,et al.  High-energy neutrinos from active galactic nuclei. , 1991, Physical review letters.

[250]  M. Sikora,et al.  Consequences of relativistic proton injection in active galactic nuclei , 1990 .

[251]  Laura Maraschi,et al.  Bulk Acceleration in Relativistic Jets and the Spectral Properties of Blazars , 1989 .

[252]  Peter L. Biermann,et al.  Synchrotron Emission from Shock Waves in Active Galactic Nuclei , 1987 .

[253]  Walter Kieran Gear,et al.  Models for high-frequency radio outbursts in extragalactic sources, with application to the early 1983 millimeter-to-infrared flare of 3C 273. , 1985 .

[254]  C. Urry,et al.  Luminosity enhancement in relativistic jets and altered luminosity functions for beamed objects , 1984 .

[255]  R. Protheroe,et al.  On the origin of relativistic particles and gamma-rays in quasars , 1983 .

[256]  D. Eichler High-energy neutrino astronomy: A probe of galactic nuclei , 1979 .

[257]  M. Rees The M87 jet: internal shocks in a plasma beam? , 1978 .

[258]  B. Peterson,et al.  The redshift and composite nature of AP Librae (PKS 1514-24) , 1974 .

[259]  D. Pacini,et al.  La radiazione penetrante alla superficie ed in seno alle acque , 1912 .

[260]  Pathways to Discovery in Astronomy and Astrophysics for the 2020s , 2021 .

[261]  N. Masetti,et al.  Optical Spectroscopic Observations of Gamma-ray Blazar Candidates. XI. Optical Observations from SOAR, Blanco, NTT and OAN-SPM. The Story So Far , 2021, The Astronomical Journal.

[262]  M. C. Hiaberge,et al.  DETECTION OF AN OPTICAL/UV JET/COUNTERJET AND MULTIPLE SPECTRAL COMPONENTS IN M84 , 2020 .

[263]  T. B. Watson,et al.  Neutrino astronomy with the next generation IceCube Neutrino Observatory , 2019 .

[264]  G. Richards,et al.  Photohadronic origin of γ-ray BL Lac emission: implications for IceCube neutrinos , 2015 .

[265]  M. Camenzind,et al.  Formation of the First Supermassive Black Holes in the Early Universe , 2009 .

[266]  A. R. Bazer-Bachi,et al.  New constraints on the mid-IR EBL from the HESS discovery of VHE γ -rays from 1ES 0229+200 , 2007 .

[267]  G. Chartas,et al.  CHANDRA OBSERVATIONS OF RADIO-LOUD QUASARS AT Z > 4: X-RAYS FROM THE RADIO BEACONS OF THE EARLY UNIVERSE , 2004 .

[268]  Accepted for publication in The Astrophysical Journal X-ray spectral variability signatures of flares in BL Lac objects , 2002 .

[269]  P. Giommi,et al.  Extreme Synchrotron BL Lac Objects Stretching the Blazar sequence , 2001 .

[270]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[271]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[272]  K. Arnaud XSPEC: The First Ten Years , 1996 .

[273]  D. Thompson,et al.  Gamma-Ray Observations of the Crab Nebula: A Study of the Synchro-Compton Spectrum , 1996 .

[274]  P. Madau,et al.  Beaming in blazars , 1987 .

[275]  V. Berezinsky,et al.  On high-energy neutrino radiation of quasars and active galactic nuclei , 1981 .

[276]  J. Miller BL Lacertae objects , 1978 .

[277]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .