Electrogenic Tuning of the Axon Initial Segment

Action potentials (APs) provide the primary means of rapid information transfer in the nervous system. Where exactly these signals are initiated in neurons has been a basic question in neurobiology and the subject of extensive study. Converging lines of evidence indicate that APs are initiated in a discrete and highly specialized portion of the axon—the axon initial segment (AIS). The authors review key aspects of the organization and function of the AIS and focus on recent work that has provided important insights into its electrical signaling properties. In addition to its main role in AP initiation, the new findings suggest that the AIS is also a site of complex AP modulation by specific types of ion channels localized to this axonal domain.

[1]  M. Migliore,et al.  Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons , 2008, Proceedings of the National Academy of Sciences.

[2]  Youngnam Kang,et al.  Two opposing roles of 4-AP-sensitive K+ current in initiation and invasion of spikes in rat mesencephalic trigeminal neurons. , 2006, Journal of neurophysiology.

[3]  Johannes J. Letzkus,et al.  Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity , 2007, Trends in Neurosciences.

[4]  U. Rudolph,et al.  GABA-based therapeutic approaches: GABAA receptor subtype functions. , 2006, Current opinion in pharmacology.

[5]  J. Trimmer,et al.  Localization and targeting of voltage-dependent ion channels in mammalian central neurons. , 2008, Physiological reviews.

[6]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[7]  B. Sakmann,et al.  Action potential initiation and propagation in rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[8]  D. Ottoson,et al.  The site of impulse initiation in a nerve cell of a crustacean stretch receptor , 1958, The Journal of physiology.

[9]  Juha Voipio,et al.  GABAergic Depolarization of the Axon Initial Segment in Cortical Principal Neurons Is Caused by the Na–K–2Cl Cotransporter NKCC1 , 2008, The Journal of Neuroscience.

[10]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[11]  I. Forsythe,et al.  Two Heteromeric Kv1 Potassium Channels Differentially Regulate Action Potential Firing , 2002, The Journal of Neuroscience.

[12]  T. Jentsch Neuronal KCNQ potassium channels:physislogy and role in disease , 2000, Nature Reviews Neuroscience.

[13]  S. Scherer,et al.  KCNQ2 Is a Nodal K+ Channel , 2004, The Journal of Neuroscience.

[14]  M. Tamkun,et al.  The Kv2.1 K+ channel targets to the axon initial segment of hippocampal and cortical neurons in culture and in situ , 2008, BMC Neuroscience.

[15]  V. Bennett,et al.  Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments , 2001, The Journal of cell biology.

[16]  J. DeFelipe,et al.  Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Miles A Whittington,et al.  Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro. , 2004, Annual review of neuroscience.

[18]  C. McBain,et al.  Interneuron Diversity series: Containing the detonation – feedforward inhibition in the CA3 hippocampus , 2003, Trends in Neurosciences.

[19]  Ethan M. Goldberg,et al.  Voltage Gated Potassium Channels: Structure and Function of Kv1 to Kv9 Subfamilies , 2009 .

[20]  J. Salzer,et al.  Polarized Domains of Myelinated Axons , 2003, Neuron.

[21]  A. Spauschus,et al.  Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability , 2000, Annals of neurology.

[22]  William A Catterall,et al.  Temperature- and age-dependent seizures in a mouse model of severe myoclonic epilepsy in infancy , 2009, Proceedings of the National Academy of Sciences.

[23]  J. Cooley,et al.  Action potential of the motorneuron , 1973 .

[24]  Michael Litt,et al.  Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1 , 1994, Nature Genetics.

[25]  Yousheng Shu,et al.  Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation , 2009, Nature Neuroscience.

[26]  L. Jan,et al.  The distribution and targeting of neuronal voltage-gated ion channels , 2006, Nature Reviews Neuroscience.

[27]  Sanford L. Palay,et al.  THE AXON HILLOCK AND THE INITIAL SEGMENT , 1968, The Journal of cell biology.

[28]  Zoltan Nusser,et al.  Cell-Type-Dependent Molecular Composition of the Axon Initial Segment , 2008, The Journal of Neuroscience.

[29]  J. Benson,et al.  Benzodiazepine actions mediated by specific γ-aminobutyric acidA receptor subtypes , 1999, Nature.

[30]  W. Catterall,et al.  Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Cajal Recollections of my life , 1989 .

[32]  Bert Sakmann,et al.  Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons , 1995, Neuron.

[33]  G. Stuart,et al.  Site of Action Potential Initiation in Layer 5 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[34]  D. Johnston,et al.  Axonal Action-Potential Initiation and Na+ Channel Densities in the Soma and Axon Initial Segment of Subicular Pyramidal Neurons , 1996, The Journal of Neuroscience.

[35]  Hiroyuki Miyamoto,et al.  Nav1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying an Scn1a Gene Mutation , 2007, The Journal of Neuroscience.

[36]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[37]  A. Baruzzi,et al.  Familial continuous motor unit activity and epilepsy , 2001, Muscle & nerve.

[38]  E. Welker,et al.  K+ Channel Expression Distinguishes Subpopulations of Parvalbumin- and Somatostatin-Containing Neocortical Interneurons , 1999, The Journal of Neuroscience.

[39]  Stéphanie Baulac,et al.  Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2 , 2000, Nature Genetics.

[40]  A. Erisir,et al.  Function of specific K(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. , 1999, Journal of neurophysiology.

[41]  L. Trussell,et al.  Axon Initial Segment Ca2+ Channels Influence Action Potential Generation and Timing , 2009, Neuron.

[42]  Johannes J. Letzkus,et al.  Axon Initial Segment Kv1 Channels Control Axonal Action Potential Waveform and Synaptic Efficacy , 2007, Neuron.

[43]  A. Sampson,et al.  Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. , 2002, Cerebral cortex.

[44]  John M. Bekkers,et al.  Modulation of Excitability by α-Dendrotoxin-Sensitive Potassium Channels in Neocortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[45]  M. Higgs,et al.  Functional roles of Kv1 channels in neocortical pyramidal neurons. , 2007, Journal of neurophysiology.

[46]  Harunori Ohmori,et al.  Axonal site of spike initiation enhances auditory coincidence detection , 2006, Nature.

[47]  S. Conradi Ultrastructural specialization of the initial axon segment of cat lumbar motoneurons. Preliminary observations. , 1966, Acta Societatis Medicorum Upsaliensis.

[48]  M. Schultze,et al.  Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere , 1865 .

[49]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[50]  I. Forsythe,et al.  Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Elior Peles,et al.  Postsynaptic Density-93 Clusters Kv1 Channels at Axon Initial Segments Independently of Caspr2 , 2008, The Journal of Neuroscience.

[52]  Vann Bennett,et al.  AnkyrinG Is Required for Clustering of Voltage-gated Na Channels at Axon Initial Segments and for Normal Action Potential Firing , 1998, The Journal of cell biology.

[53]  William A. Catterall,et al.  International Union of Pharmacology. XLVII. Nomenclature and Structure-Function Relationships of Voltage-Gated Sodium Channels , 2005, Pharmacological Reviews.

[54]  Christoph Schmidt-Hieber,et al.  Action potential initiation and propagation in hippocampal mossy fibre axons , 2008, The Journal of physiology.

[55]  S. Mennerick,et al.  Action potential initiation and propagation in CA3 pyramidal axons. , 2007, Journal of neurophysiology.

[56]  George Adelman,et al.  Encyclopedia of neuroscience , 2004 .

[57]  D. A. Brown,et al.  Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone , 1980, Nature.

[58]  G. Matthews,et al.  Polarized distribution of ion channels within microdomains of the axon initial segment , 2007, The Journal of comparative neurology.

[59]  Gary Matthews,et al.  Functional Specialization of the Axon Initial Segment by Isoform-Specific Sodium Channel Targeting , 2003, The Journal of Neuroscience.

[60]  M. Rasband,et al.  The functional organization and assembly of the axon initial segment , 2008, Current Opinion in Neurobiology.

[61]  J. DeFelipe Chandelier cells and epilepsy. , 1999, Brain : a journal of neurology.

[62]  A. M. Rush,et al.  Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons , 2007, The Journal of physiology.

[63]  Tiago Branco,et al.  The site of action potential initiation in cerebellar Purkinje neurons , 2005, Nature Neuroscience.

[64]  T. Sejnowski,et al.  A model of spike initiation in neocortical pyramidal neurons , 1995, Neuron.

[65]  D. Ragsdale How do mutant Nav1.1 sodium channels cause epilepsy? , 2008, Brain Research Reviews.

[66]  A. Harvey,et al.  Twenty years of dendrotoxins. , 2001, Toxicon : official journal of the International Society on Toxinology.

[67]  Vann Bennett,et al.  A Common Ankyrin-G-Based Mechanism Retains KCNQ and NaV Channels at Electrically Active Domains of the Axon , 2006, The Journal of Neuroscience.

[68]  J. Eccles,et al.  The generation of impulses in motoneurones , 1957, The Journal of physiology.

[69]  G. Stuart,et al.  Is action potential threshold lowest in the axon? , 2008, Nature Neuroscience.

[70]  I. Forsythe,et al.  Initial segment Kv2.2 channels mediate a slow delayed rectifier and maintain high frequency action potential firing in medial nucleus of the trapezoid body neurons , 2008, The Journal of physiology.

[71]  A. S. French,et al.  Information processing by graded-potential transmission through tonically active synapses , 1996, Trends in Neurosciences.

[72]  J. Eccles,et al.  The interpretation of spike potentials of motoneurones , 1957, The Journal of physiology.

[73]  Ethan M. Goldberg,et al.  K+ Channels at the Axon Initial Segment Dampen Near-Threshold Excitability of Neocortical Fast-Spiking GABAergic Interneurons , 2008, Neuron.

[74]  W. Alves,et al.  Randomized, multicenter, dose-ranging trial of retigabine for partial-onset seizures , 2007, Neurology.

[75]  D. Contreras,et al.  Impaired Fast-Spiking, Suppressed Cortical Inhibition, and Increased Susceptibility to Seizures in Mice Lacking Kv3.2 K+ Channel Proteins , 2000, The Journal of Neuroscience.

[76]  Michael Häusser,et al.  Neural Coding: Hybrid Analog and Digital Signalling in Axons , 2006, Current Biology.

[77]  B. Rudy,et al.  Molecular Diversity of K+ Channels , 1999, Annals of the New York Academy of Sciences.

[78]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[79]  D. McCormick,et al.  Selective control of cortical axonal spikes by a slowly inactivating K+ current , 2007, Proceedings of the National Academy of Sciences.

[80]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.

[81]  Ethan M. Goldberg,et al.  Specific Functions of Synaptically Localized Potassium Channels in Synaptic Transmission at the Neocortical GABAergic Fast-Spiking Cell Synapse , 2005, The Journal of Neuroscience.

[82]  M. Rasband,et al.  AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity , 2008, The Journal of cell biology.

[83]  M. Rasband,et al.  Intrinsic and extrinsic determinants of ion channel localization in neurons , 2006, Journal of neurochemistry.

[84]  J. Benson,et al.  Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. , 1999, Nature.

[85]  J. Salzer,et al.  Nodes of Ranvier and axon initial segments are ankyrin G–dependent domains that assemble by distinct mechanisms , 2007, The Journal of cell biology.

[86]  Zayd M. Khaliq,et al.  Relative Contributions of Axonal and Somatic Na Channels to Action Potential Initiation in Cerebellar Purkinje Neurons , 2006, The Journal of Neuroscience.

[87]  S. Mennerick,et al.  Review Action Potential Initiation and Propagation: Upstream Influences on Neurotransmission , 2022 .

[88]  D. McCormick,et al.  Cortical Action Potential Backpropagation Explains Spike Threshold Variability and Rapid-Onset Kinetics , 2008, The Journal of Neuroscience.

[89]  W. Vogel,et al.  Uneven distribution of K+ channels in soma, axon and dendrites of rat spinal neurones: functional role of the soma in generation of action potentials , 1998, The Journal of physiology.

[90]  G. Tamás,et al.  Lighting the chandelier: new vistas for axo-axonic cells , 2005, Trends in Neurosciences.

[91]  Hao Wang,et al.  Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice , 1998, Neuron.

[92]  P. Bishop,et al.  Synaptic transmission. An analysis of the electrical activity of the lateral geniculate nucleus in the cat after optic nerve stimulation , 1953, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[93]  Mitchell Glickstein,et al.  Foundations of the neuron doctrine , 1993, Medical History.

[94]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[95]  D. McCormick,et al.  Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential , 2006, Nature.

[96]  G. Shepherd Foundations of the neuron doctrine , 1991 .

[97]  I. Forsythe,et al.  The calyx of Held , 2006, Cell and Tissue Research.

[98]  Bernardo Rudy,et al.  Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing , 2001, Trends in Neurosciences.

[99]  N. Spruston,et al.  Action potential initiation and backpropagation in neurons of the mammalian CNS , 1997, Trends in Neurosciences.

[100]  T. Araki,et al.  Response of single motoneurons to direct stimulation in toad's spinal cord. , 1955, Journal of neurophysiology.

[101]  H. Alle,et al.  Analog signalling in mammalian cortical axons , 2008, Current Opinion in Neurobiology.

[102]  P. Somogyi,et al.  Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[103]  B. Kampa,et al.  Action potential generation requires a high sodium channel density in the axon initial segment , 2008, Nature Neuroscience.

[104]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[105]  P. Fatt,et al.  Sequence of events in synaptic activation of a motoneurone. , 1957, Journal of neurophysiology.

[106]  Friedrich Huisken,et al.  Distal Initiation and Active Propagation of Action Potentials in Interneuron Dendrites , 2000 .