An Integrative Loss Function Approach to Multi‐Response Optimization

Loss function approach is effective for multi-response optimization. However, previous loss function approaches ignore thedispersion performance of squared error loss and model uncertainty. In this paper, a weighted loss function is proposed tosimultaneously consider the location and dispersion performances of squared error loss to optimize correlated multipleresponseswith model uncertainty. We proposean approach tominimize the weighted loss function underthe constraint thatthe confidence intervals of future predictions for the multiple responses should be contained in specification limits of theresponses. An example is illustrated to verify the effectiveness of the proposed method. The results show that the proposedmethod can achieve reliable optimal operating condition under model uncertainty. Copyright © 2013 John Wiley & Sons, Ltd.Keywords: loss function; model uncertainty; location and dispersion performances; confidence interval; specification limit

[1]  Young-Hyun Ko,et al.  A New Loss Function-Based Method for Multiresponse Optimization , 2005 .

[2]  Szu Hui Ng,et al.  A Bayesian Model-Averaging Approach for Multiple-Response Optimization , 2010 .

[3]  Dennis K. J. Lin,et al.  Dual-Response Surface Optimization: A Weighted MSE Approach , 2004 .

[4]  Ying Feng,et al.  Ensemble of Surrogates for Dual Response Surface Modeling in Robust Parameter Design , 2013, Qual. Reliab. Eng. Int..

[5]  Mischa Schwartz,et al.  Information transmission, modulation, and noise , 1959 .

[6]  Raymond H. Myers,et al.  Response Surface Methodology--Current Status and Future Directions , 1999 .

[7]  Byung Rae Cho,et al.  Development of the Hybrid Weight Assessment System for Multiple Quality Attributes , 2002 .

[8]  John H. Sheesley,et al.  Quality Engineering in Production Systems , 1988 .

[9]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[10]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[11]  Srikrishna Madhumohan Govindaluri,et al.  Robust design modeling with correlated quality characteristics using a multicriteria decision framework , 2007 .

[12]  Paul L. Goethals,et al.  Extending the desirability function to account for variability measures in univariate and multivariate response experiments , 2012, Comput. Ind. Eng..

[13]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[14]  In-Jun Jeong,et al.  Optimal Weighting of Bias and Variance in Dual Response Surface Optimization , 2005 .

[15]  John J. Peterson,et al.  A General Approach to Confidence Regions for Optimal Factor Levels of Response Surfaces , 2002, Biometrics.

[16]  Om Prakash Yadav,et al.  A Robust Framework for Multi-Response Surface Optimization Methodology , 2014, Qual. Reliab. Eng. Int..

[17]  Zhen He,et al.  A robust desirability function method for multi-response surface optimization considering model uncertainty , 2012, Eur. J. Oper. Res..

[18]  M. Hamada,et al.  Analyzing Experiments with Correlated Multiple Responses , 2001 .

[19]  In-Jun Jeong,et al.  An interactive desirability function method to multiresponse optimization , 2009, Eur. J. Oper. Res..

[20]  Jeongbae Kim,et al.  A cautious approach to robust design with model parameter uncertainty , 2011 .

[21]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[22]  Weng Kee Wong,et al.  Balancing Location and Dispersion Effects for Multiple Responses , 2013, Qual. Reliab. Eng. Int..

[23]  Saeed Maghsoodloo,et al.  Quadratic loss functions and signal-to-noise ratios for a bivariate response , 2001 .

[24]  G. Geoffrey Vining,et al.  A Compromise Approach to Multiresponse Optimization , 1998 .

[25]  Mostafa K. Ardakani,et al.  An Overview of Optimization Formulations for Multiresponse Surface Problems , 2013, Qual. Reliab. Eng. Int..

[26]  George E. P. Box,et al.  A CONFIDENCE REGION FOR THE SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS WITH AN APPLICATION TO EXPERIMENTAL DESIGN , 1954 .

[27]  Saeed Maghsoodloo,et al.  Quadratic quality loss functions and signal-to-noise ratios for a trivariate response , 2004 .

[28]  John J. Peterson A Posterior Predictive Approach to Multiple Response Surface Optimization , 2004 .

[29]  Hsing-Pei Kao,et al.  An Integrated Method for the Optimization of Multiple-Attribute Product Design , 1992 .

[30]  Douglas M. Hawkins,et al.  Quality Loss Functions for Optimization across Multiple Response Surfaces , 1997 .

[31]  Enrique del Castillo,et al.  Model-Robust Process Optimization Using Bayesian Model Averaging , 2005, Technometrics.

[32]  Joseph J. Pignatiello,et al.  STRATEGIES FOR ROBUST MULTIRESPONSE QUALITY ENGINEERING , 1993 .

[33]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[34]  Dennis K. J. Lin,et al.  Bayesian analysis for weighted mean‐squared error in dual response surface optimization , 2010, Qual. Reliab. Eng. Int..