Progress of porous Al-containing intermetallics fabricated by combustion synthesis reactions: a review

[1]  Xiaohong Wang,et al.  Preparation of Porous NiAl Intermetallic with Controllable Shape and Pore Structure by Rapid Thermal Explosion with Space Holder , 2021, Metals and Materials International.

[2]  X. Jiao,et al.  Visible Observation and Formation Mechanism of Porous TiAl3 Intermetallics During the Continuous Sintering Process , 2020, JOM.

[3]  Xiaohong Wang,et al.  Rapid Preparation of Porous Ni–Al Intermetallics by Thermal Explosion , 2020, Combustion Science and Technology.

[4]  X. Jiao,et al.  Exothermic behavior and thermodynamic analysis for the formation of porous TiAl3 intermetallics sintering with different heating rates , 2019, Journal of Alloys and Compounds.

[5]  X. Jiao,et al.  Rapid reactive synthesis of TiAl3 intermetallics by thermal explosion and its oxidation resistance at high temperature , 2019, Progress in Natural Science: Materials International.

[6]  P. Feng,et al.  Microstructure and oxidation resistance of porous NbAl3 intermetallic prepared by thermal explosion reaction , 2019, Materials Science and Technology.

[7]  Ping Zhang,et al.  Porous NbAl3/TiAl3 intermetallic composites with controllable porosity and pore morphology prepared by two-step thermal explosion , 2019, Journal of Materials Research and Technology.

[8]  N. Takata,et al.  Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method , 2019, Journal of Materials Processing Technology.

[9]  P. Yu,et al.  Influences of sintering parameters on shape-retention ability of porous Ni3Al intermetallic fabricated by powder metallurgy , 2019, Intermetallics.

[10]  T. Czujko,et al.  Fabrication and Characterization of Highly Porous FeAl‐Based Intermetallics by Thermal Explosion Reaction , 2019, Advanced Engineering Materials.

[11]  W. Xie,et al.  Modification of the reactive synthesis of porous FeAl with addition of Si , 2019 .

[12]  Guanghua Liu,et al.  Combustion synthesis: An effective tool for preparing inorganic materials , 2018, Scripta Materialia.

[13]  T. Czujko,et al.  Fabrication of highly porous TiAl_3 intermetallics using titanium hydride as a reactant in the thermal explosion reaction , 2018, Journal of Materials Research.

[14]  Xiaohong Wang,et al.  Fabrication of Highly Porous CuAl Intermetallic by Thermal Explosion Using NaCl Space Holder , 2018, JOM.

[15]  X. Jiao,et al.  Fabrication of porous FeAl-based intermetallics via thermal explosion , 2018, Transactions of Nonferrous Metals Society of China.

[16]  Xiaohong Wang,et al.  Oxidation Resistance of Highly Porous Fe-Al Foams Prepared by Thermal Explosion , 2018, Metallurgical and Materials Transactions A.

[17]  P. Feng,et al.  Microstructure and properties of Al-Cr porous intermetallics fabricated by thermal explosion reaction , 2018 .

[18]  Xiaohong Wang,et al.  Porous TiAl3 intermetallics with symmetrical graded pore-structure fabricated by leaching space holder and thermal explosion process , 2018 .

[19]  W. J. Stępniowski,et al.  Fabrication of FeAl Intermetallic Foams by Tartaric Acid-Assisted Self-Propagating High-Temperature Synthesis , 2018, Materials.

[20]  Xiaohong Wang,et al.  Microstructure Evolution and Pore Formation Mechanism of Porous TiAl3 Intermetallics via Reactive Sintering , 2018, Acta Metallurgica Sinica (English Letters).

[21]  X. Jiao,et al.  A novel fabrication strategy for highly porous FeAl/Al2O3 composite by thermal explosion in vacuum , 2018 .

[22]  W. Xie,et al.  Suppression of the SHS reactions during synthesis of porous FeAl intermetallics by introducing silicon , 2018 .

[23]  C. Liu,et al.  Review of porous intermetallic compounds by reactive synthesis of elemental powders , 2018 .

[24]  X. Jiao,et al.  Fe-Al intermetallic foam with porosity above 60 % prepared by thermal explosion , 2018 .

[25]  W. J. Stępniowski,et al.  Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys , 2017, Materials.

[26]  N. Park,et al.  Effect of Cr and Nb on the phase transformation and pore formation of Ti-Al base alloys , 2017 .

[27]  N. Takata,et al.  Compressive properties of porous Ti–Al alloys fabricated by reaction synthesis using a space holder powder , 2017 .

[28]  Xiaohong Wang,et al.  Effect of heating rate on porous TiAl-based intermetallics synthesized by thermal explosion , 2017 .

[29]  A. Maznoy,et al.  Combustion synthesis and characterization of porous Ni-Al materials for metal-supported solid oxide fuel cells application , 2017 .

[30]  Xihua Zhang,et al.  Microstructure and tribological behavior of NiAl/WC composites fabricated by thermal explosion reaction at 800 °C , 2017 .

[31]  Xiaohong Wang,et al.  Hierarchical porous TiAl3 intermetallics synthesized by thermal explosion with a leachable space-holder material , 2016 .

[32]  W. J. Stępniowski,et al.  Highly-porous FeAl intermetallic foams formed via sintering with Eosin Y as a gas releasing agent , 2016 .

[33]  Chang-jiu Li,et al.  Preparation of hierarchical porous metallic materials via deposition of microporous particles , 2016 .

[34]  W. J. Stępniowski,et al.  Advanced Image Analysis of the Surface Pattern Emerging in Ni3Al Intermetallic Alloys on Anodization , 2016, Front. Mater..

[35]  P. Yu,et al.  Effects of cold compacting pressure on the expansion behavior of Ti-48Al during sintering , 2016 .

[36]  C. Yeh,et al.  Use of TiH2 as a reactant in combustion synthesis of porous Ti5Si3 and Ti5Si3/TiAl intermetallics , 2016 .

[37]  Hong Wang,et al.  Effect of pore structure on mechanical properties of porous TiAl , 2016 .

[38]  C. Leonelli,et al.  Microwave ignition of the combustion synthesis of aluminides and field-related effects , 2016 .

[39]  W. J. Stępniowski,et al.  Crystalline oxalic acid aided FeAl intermetallic alloy sintering. Fabrication of intermetallic foam with porosity above 45 , 2016 .

[40]  Q. Peng,et al.  Porous TiAl alloys fabricated by sintering of TiH2 and Al powder mixtures , 2016 .

[41]  Zi-kui Liu,et al.  Phase transformation in Ti–48Al–6Nb porous alloys and its influence on pore properties , 2015 .

[42]  M. Salerno,et al.  Biomedical Applications of Anodic Porous Alumina , 2015 .

[43]  S. Iyengar,et al.  A study on the formation of iron aluminide (FeAl) from elemental powders , 2015 .

[44]  Zijun Hu,et al.  In situ foam-gelcasting fabrication and properties of highly porous γ-Y2Si2O7 ceramic with multiple pore structures , 2015 .

[45]  J. Zou,et al.  Mechanical properties of porous Fe–Al intermetallics , 2015 .

[46]  S. Iyengar,et al.  Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures , 2015, Journal of Thermal Analysis and Calorimetry.

[47]  Shouwu Guo,et al.  Rapid synthesis of Ti2AlN ceramic via thermal explosion , 2015 .

[48]  T. Durejko,et al.  Porous graded FeAl intermetallic foams fabricated by sintering process using NaCl space holders , 2015 .

[49]  Y. Ge,et al.  Synthesis, microstructure and properties of Ti–Al porous intermetallic compounds prepared by a thermal explosion reaction , 2015 .

[50]  R. Dittmeyer,et al.  Inorganic microporous membranes for H2 and CO2 separation-Review of experimental and modeling progress , 2015 .

[51]  C. Liu,et al.  Effect of pressure on pore structure of porous FeAl intermetallics , 2015 .

[52]  S. Iyengar,et al.  Studies on the formation of aluminides in heated Nb-Al powder mixtures , 2015 .

[53]  Yuehui He,et al.  Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis , 2015 .

[54]  Hui Wang,et al.  Novel double pore structures of TiAl produced by powder metallurgy processing , 2015 .

[55]  Xiaohong Wang,et al.  Microstructure and properties of Ti5Si3-based porous intermetallic compounds fabricated via combustion synthesis , 2014 .

[56]  K. Kurzydłowski,et al.  Fabrication of TiAl intermetallic phases by heat treatment of warm sprayed metal precursors , 2014 .

[57]  Yuehui He,et al.  Effects of the Al content on pore structures of porous Ti3AlC2 ceramics by reactive synthesis , 2014 .

[58]  M. Kobashi,et al.  Hierarchical open cellular porous TiAl manufactured by space holder process , 2013 .

[59]  Min Song,et al.  Preparation and Pore Structure Stability at High Temperature of Porous Fe-Al Intermetallics , 2013, Journal of Materials Engineering and Performance.

[60]  C. Yeh,et al.  Combustion synthesis of Cr–Al and Cr–Si intermetallics with Al2O3 additions from Cr2O3–Al and Cr2O3–Al–Si reaction systems , 2013 .

[61]  H. Cui,et al.  Unique microstructure of porous NiAl intermetallic compound prepared by combustion synthesis , 2012, Journal of Porous Materials.

[62]  C. Liu,et al.  Pore evolution regulation in synthesis of open pore structured Ti–Al intermetallic compounds by solid diffusion , 2012 .

[63]  Xiaohong Wang,et al.  Combustion synthesis of (Mo1 − xCrx)Si2 (x = 0.00–0.30) alloys in SHS mode , 2012 .

[64]  Gang Chen,et al.  Effect of aluminium evaporation loss on pore characteristics of porous FeAl alloys produced by vacuum sintering , 2012, Journal of Materials Science.

[65]  H. Cui,et al.  Open-celled porous NiAl intermetallics prepared by replication of carbamide space-holders , 2011 .

[66]  N. Xu,et al.  Effect of Al content on porous Ni–Al alloys , 2011 .

[67]  N. Xu,et al.  Oxidation behavior of porous NiAl prepared through reactive synthesis , 2010 .

[68]  S. H. Seyedein,et al.  A study on the combustion synthesis of titanium aluminide in the self-propagating mode , 2010 .

[69]  J. Lin,et al.  Pore structures and thermal insulating properties of high Nb containing TiAl porous alloys , 2010 .

[70]  C. Bindal,et al.  A study on NiAl produced by pressure-assisted combustion synthesis , 2009 .

[71]  N. Xu,et al.  Porous FeAl intermetallics fabricated by elemental powder reactive synthesis , 2009 .

[72]  H. J. Wang,et al.  Effects of sample stoichiometry of thermite-based SHS reactions on formation of Nb-Al intermetallics , 2009 .

[73]  N. Xu,et al.  Formation of porous Ni–Al intermetallics through pressureless reaction synthesis , 2009 .

[74]  N. Xu,et al.  Effects of Al content on porous Fe–Al alloys , 2009 .

[75]  Qikui Fan,et al.  Microstructural evolution during the ignition/quenching of pre-heated Ti/3Al powders , 2009 .

[76]  Dao-xi Li,et al.  Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties , 2009 .

[77]  N. Xu,et al.  Reactive synthesis of microporous titanium-aluminide membranes , 2009 .

[78]  N. Xu,et al.  Effect of heating rate on pore structure of porous FeAl material , 2008 .

[79]  N. Xu,et al.  Effects of the Al content on pore structures of porous Ti–Al alloys , 2008 .

[80]  Yao Jiang,et al.  Fabrication of Ti–Al Micro/ Nanometer‐Sized Porous Alloys through the Kirkendall Effect , 2007 .

[81]  C. Milanese,et al.  Ignition and reaction mechanism of Co–Al and Nb–Al intermetallic compounds prepared by combustion synthesis , 2006 .

[82]  P. Nash,et al.  The enthalpy of formation of NiAl , 2005 .

[83]  A. Biswas Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure , 2005 .

[84]  J. Wall,et al.  Simultaneous combustion synthesis (thermal explosion mode) and extrusion of nickel aluminides , 2005 .

[85]  Nikhilesh Chawla,et al.  Microstructure and mechanical behavior of porous sintered steels , 2005 .

[86]  A. Mortensen,et al.  Processing of NaCl powders of controlled size and shape for , 2004 .

[87]  Zhiming Yu,et al.  Sulfidation behavior of Fe40Al sheet in H 2H 2S mixtures at high temperatures , 2004 .

[88]  S. Roy,et al.  Comparison between the microstructural evolutions of two modes of SHS of NiAl: key to a common reaction mechanism , 2004 .

[89]  Irena Gotman,et al.  Ti2AlC ternary carbide synthesized by thermal explosion , 2002 .

[90]  G. Zou,et al.  Synthesis of intermetallic NiAl by SHS reaction using coarse-grained nickel and ultrafine-grained aluminum produced by wire electrical explosion , 2002 .

[91]  S. Gedevanishvili,et al.  Processing of iron aluminides by pressureless sintering through Fe + Al elemental route , 2002 .

[92]  Sujit Roy,et al.  A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode , 2002 .

[93]  Jong-Hyun Lee,et al.  Effect of heating rate on the combustion synthesis of intermetallics , 2000 .

[94]  W. Kai,et al.  The corrosion behavior of Fe-Al alloys in H2/H2S/H2O atmospheres at 700–900°C , 1997 .

[95]  V. G. Abramov,et al.  Thermal Explosion of Explosives and Propellants. A review , 1981 .

[96]  R. D. Jones,et al.  Metallurgy of Continuous Hot Dip Aluminizing , 2019, Encyclopedia of Aluminum and Its Alloys.

[97]  Xiaohong Wang,et al.  Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process , 2016 .

[98]  Zi-kui Liu,et al.  Reaction behavior and pore formation mechanism of TiAl–Nb porous alloys prepared by elemental powder metallurgy , 2014 .

[99]  N. Xu,et al.  Pore structure control for porous FeAl intermetallics , 2013 .

[100]  K. Morsi The diversity of combustion synthesis processing: a review , 2011, Journal of Materials Science.

[101]  Wang Zhi-yong Research progress in porous Fe-Al,Ti-Al and Ni-Al intermetallic compound porous materials , 2011 .

[102]  U. Tamburini,et al.  Ignition mechanism in combustion synthesis of Ti–Al and Ti–Ni systems , 2003 .

[103]  A. Varma,et al.  Volume Combustion Modes in Heterogeneous Reaction Systems , 2002 .

[104]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[105]  H. Feng,et al.  Combustion synthesis of advanced materials: Part II. Classification, applications and modelling , 1995 .

[106]  John J. Moore,et al.  Combustion synthesis of advanced materials: Part I. Reaction parameters , 1995 .

[107]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .