Yoneda algebras of the triplet vertex operator algebra

Given a vertex operator algebra $V$, one can construct two associative algebras, the Zhu algebra $A(V)$ and the $C_2$-algebra $R(V)$. This gives rise to two abelian categories $A(V)-\text{Mod}$ and $R(V)-\text{Mod}$, in addition to the category of admissible modules of $V$. In case $V$ is rational and $C_2$-cofinite, the category of admissible $V$-modules and the category of all $A(V)$-modules are equivalent. However, when $V$ is not rational, the connection between these two categories is unclear. The goal of this paper is to study the triplet vertex operator algebra $\mathcal{W}(p)$, as an example to compare these three categories, in terms of abelian categories. For each of these three abelian categories, we will determine the associated Ext quiver, the Morita equivalent basic algebra, i.e., the algebra $ \text{End} (\oplus_{L\in \text{Irr}} P_L)^{op}$, and the Yoneda algebra $\text{Ext}^{*}(\oplus_{L\in \text{Irr}}L, \oplus_{L\in \text{Irr}}L)$. As a consequence, the category of admissible log-modules for the triplet VOA $ \mathcal W(p)$ has infinite global dimension, as do the Zhu algebra $A(\mathcal W(p))$, and the associated graded algebra $\text{gr} \ A(\mathcal W(p))$ which is isomorphic to $R(\mathcal W(p))$. We also describe the Koszul properties of the module categories of $ \mathcal W(p)$, $A(\mathcal W(p))$ and $\text{gr} \ A(\mathcal W(p))$.

[1]  Zongzhu Lin,et al.  Cohomological varieties associated to vertex operator algebras , 2022, 2207.11550.

[2]  Terry Gannon,et al.  Quantum SL(2) and logarithmic vertex operator algebras at (p,1)-central charge , 2021, 2104.12821.

[3]  Robert McRae,et al.  Structure of Virasoro tensor categories at central charge $13-6p-6p^{-1}$ for integers $p > 1$. , 2020, 2011.02170.

[4]  T. Creutzig,et al.  Higgs and Coulomb branches from vertex operator algebras , 2018, Journal of High Energy Physics.

[5]  C. Lam,et al.  Zhu's algebra, C_2-algebra and C_2-cofiniteness of parafermion vertex operator algebras , 2012, 1207.3909.

[6]  Zongzhu Lin,et al.  Approach to artinian algebras via natural quivers , 2012, 1303.7049.

[7]  J. Lepowsky,et al.  Vertex Operator Algebras and the Monster , 2011 .

[8]  山田 泰彦,et al.  Exploring new structures and natural constructions in mathematical physics , 2011 .

[9]  Dražen Adamović,et al.  The structure of Zhu's algebras for certain W-algebras , 2010, 1006.5134.

[10]  T. Arakawa A remark on the C2-cofiniteness condition on vertex algebras , 2010, 1004.1492.

[11]  R. Martínez-Villa Introduction to Koszul Algebras , 2007 .

[12]  D. Simson,et al.  Elements of the Representation Theory of Associative Algebras , 2007 .

[13]  Dražen Adamović,et al.  On the triplet vertex algebra W(p) , 2007, 0707.1857.

[14]  Dražen Adamović,et al.  Logarithmic intertwining operators and W(2,2p−1) algebras , 2007, math/0702081.

[15]  J. J. Zhang,et al.  A-INFINITY STRUCTURE ON EXT-ALGEBRAS , 2006, math/0606144.

[16]  B. Feigin,et al.  Modular Group Representations and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group Center , 2005, hep-th/0504093.

[17]  D. Madsen Ext-algebras and derived equivalences , 2006 .

[18]  A. Gainutdinov,et al.  Kazhdan--Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic Conformal Field Theory , 2005 .

[19]  Haisheng Li Abelianizing Vertex Algebras , 2004, math/0409140.

[20]  J. Lepowsky,et al.  Introduction to Vertex Operator Algebras and Their Representations , 2003 .

[21]  Dražen Adamović Classification of irreducible modules of certain subalgebras of free boson vertex algebra , 2002, math/0207155.

[22]  C. Weibel,et al.  An Introduction to Homological Algebra: References , 1960 .

[23]  C. Dong,et al.  Twisted representations of vertex operator algebras , 1995, q-alg/9509005.

[24]  N. Chriss,et al.  Representation theory and complex geometry , 1997 .

[25]  C. Dong,et al.  Vertex Operator Algebras and Associative Algebras , 1996, q-alg/9612010.

[26]  E. Cline,et al.  Stratifying endomorphism algebras , 1996 .

[27]  Yongchang Zhu,et al.  Modular invariance of characters of vertex operator algebras , 1995 .

[28]  X. Jie Generic modules over the quantum groupUt(sl(2)) att a root of unit , 1994 .

[29]  R. Suter Modules over Uq(sl2) , 1994 .

[30]  Chongying Dong,et al.  Vertex Algebras Associated with Even Lattices , 1993 .

[31]  James Lepowsky,et al.  On Axiomatic Approaches to Vertex Operator Algebras and Modules , 1993 .

[32]  R. Borcherds Vertex algebras, Kac-Moody algebras, and the Monster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Günter Krause,et al.  Growth of Algebras and Gelfand-Kirillov Dimension , 1985 .

[34]  R. Gordon,et al.  Graded Artin Algebras , 1982 .

[35]  P. Gabriel Auslander-Reiten sequences and representation-finite algebras , 1980 .

[36]  Drab Indecomposable Representations of Graphs and Algebras , 1976 .

[37]  Claus Michael Ringel,et al.  Indecomposable Representations of Graphs and Algebras , 1976 .

[38]  J. Tate Homology of Noetherian rings and local rings , 1957 .

[39]  E. M. Hartwell Boston , 1906 .