Yoneda algebras of the triplet vertex operator algebra
暂无分享,去创建一个
[1] Zongzhu Lin,et al. Cohomological varieties associated to vertex operator algebras , 2022, 2207.11550.
[2] Terry Gannon,et al. Quantum SL(2) and logarithmic vertex operator algebras at (p,1)-central charge , 2021, 2104.12821.
[3] Robert McRae,et al. Structure of Virasoro tensor categories at central charge $13-6p-6p^{-1}$ for integers $p > 1$. , 2020, 2011.02170.
[4] T. Creutzig,et al. Higgs and Coulomb branches from vertex operator algebras , 2018, Journal of High Energy Physics.
[5] C. Lam,et al. Zhu's algebra, C_2-algebra and C_2-cofiniteness of parafermion vertex operator algebras , 2012, 1207.3909.
[6] Zongzhu Lin,et al. Approach to artinian algebras via natural quivers , 2012, 1303.7049.
[7] J. Lepowsky,et al. Vertex Operator Algebras and the Monster , 2011 .
[8] 山田 泰彦,et al. Exploring new structures and natural constructions in mathematical physics , 2011 .
[9] Dražen Adamović,et al. The structure of Zhu's algebras for certain W-algebras , 2010, 1006.5134.
[10] T. Arakawa. A remark on the C2-cofiniteness condition on vertex algebras , 2010, 1004.1492.
[11] R. Martínez-Villa. Introduction to Koszul Algebras , 2007 .
[12] D. Simson,et al. Elements of the Representation Theory of Associative Algebras , 2007 .
[13] Dražen Adamović,et al. On the triplet vertex algebra W(p) , 2007, 0707.1857.
[14] Dražen Adamović,et al. Logarithmic intertwining operators and W(2,2p−1) algebras , 2007, math/0702081.
[15] J. J. Zhang,et al. A-INFINITY STRUCTURE ON EXT-ALGEBRAS , 2006, math/0606144.
[16] B. Feigin,et al. Modular Group Representations and Fusion in Logarithmic Conformal Field Theories and in the Quantum Group Center , 2005, hep-th/0504093.
[17] D. Madsen. Ext-algebras and derived equivalences , 2006 .
[18] A. Gainutdinov,et al. Kazhdan--Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic Conformal Field Theory , 2005 .
[19] Haisheng Li. Abelianizing Vertex Algebras , 2004, math/0409140.
[20] J. Lepowsky,et al. Introduction to Vertex Operator Algebras and Their Representations , 2003 .
[21] Dražen Adamović. Classification of irreducible modules of certain subalgebras of free boson vertex algebra , 2002, math/0207155.
[22] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[23] C. Dong,et al. Twisted representations of vertex operator algebras , 1995, q-alg/9509005.
[24] N. Chriss,et al. Representation theory and complex geometry , 1997 .
[25] C. Dong,et al. Vertex Operator Algebras and Associative Algebras , 1996, q-alg/9612010.
[26] E. Cline,et al. Stratifying endomorphism algebras , 1996 .
[27] Yongchang Zhu,et al. Modular invariance of characters of vertex operator algebras , 1995 .
[28] X. Jie. Generic modules over the quantum groupUt(sl(2)) att a root of unit , 1994 .
[29] R. Suter. Modules over Uq(sl2) , 1994 .
[30] Chongying Dong,et al. Vertex Algebras Associated with Even Lattices , 1993 .
[31] James Lepowsky,et al. On Axiomatic Approaches to Vertex Operator Algebras and Modules , 1993 .
[32] R. Borcherds. Vertex algebras, Kac-Moody algebras, and the Monster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[33] Günter Krause,et al. Growth of Algebras and Gelfand-Kirillov Dimension , 1985 .
[34] R. Gordon,et al. Graded Artin Algebras , 1982 .
[35] P. Gabriel. Auslander-Reiten sequences and representation-finite algebras , 1980 .
[36] Drab. Indecomposable Representations of Graphs and Algebras , 1976 .
[37] Claus Michael Ringel,et al. Indecomposable Representations of Graphs and Algebras , 1976 .
[38] J. Tate. Homology of Noetherian rings and local rings , 1957 .
[39] E. M. Hartwell. Boston , 1906 .