The distributions of the smallest disks containing the Poisson-Voronoi typical cell and the Crofton cell in the plane

Among the disks centered at a typical particle of the two-dimensional Poisson-Voronoi tessellation, let R m be the radius of the largest included within the polygonal cell associated with that particle and R M be the radius of the smallest containing that polygonal cell. In this article, we obtain the joint distribution of R m and R M. This result is derived from the covering properties of the circle due to Stevens, Siegel and Holst. The same method works for studying the Crofton cell associated with the Poisson line process in the plane. The computation of the conditional probabilities P{R M ≥ r + s | R m = r} reveals the circular property of the Poisson-Voronoi typical cells (as well as the Crofton cells) having a ‘large’ in-disk.

[1]  Herbert Solomon,et al.  Geometric Probability , 1978, CBMS-NSF regional conference series in applied mathematics.

[2]  Pierre Calka Mosaı̈ques poissoniennes de l'espace euclidien. Une extension d'un résultat de R.E. Miles , 2001 .

[3]  S. Goudsmit,et al.  Random Distribution of Lines in a Plane , 1945 .

[4]  Pierre Calka,et al.  Sur la fonction spectrale des cellules de Poisson–Voronoi , 2001 .

[5]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[6]  L. Shepp Covering the circle with random ARCS , 1972 .

[7]  F. Baccelli,et al.  On a coverage process ranging from the Boolean model to the Poisson–Voronoi tessellation with applications to wireless communications , 2001, Advances in Applied Probability.

[8]  R. E. Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Andrew F. Siegel,et al.  Covering the Circle with Random Arcs of Random Sizes. , 1982 .

[10]  A. Goldman Le spectre de certaines mosaïques poissoniennes du plan et l'enveloppe convexe du pont brownien , 1996 .

[11]  L. A. Shepp,et al.  ON THE PROBABILITY OF COVERING THE CIRCLE BY RANDOM ARCS , 1987 .

[12]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[13]  RANDOM SPACE FILLING AND MOMENTS OF COVERAGE IN GEOMETRICAL PROBABILITY , 1978 .

[14]  R E Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Katy Paroux Quelques théorèmes centraux limites pour les processus poissoniens de droites dans le plan , 1998, Advances in Applied Probability.

[16]  Susmit Kumar,et al.  Thermal Conductivity of Polycrystalline Materials , 1995 .

[17]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[18]  R. E. Miles,et al.  RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Fossy,et al.  On a Voronoi Aggregative Process Related to a Bivariate Poisson Process , 1996 .

[20]  Mark A. McComb Comparison Methods for Stochastic Models and Risks , 2003, Technometrics.

[21]  R. Weygaert Fragmenting the universe. III: The construction and statistics of 3-D Voronoi tessellations , 1994 .

[22]  Igor N. Kovalenko,et al.  A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons , 1999 .