All-State Switching of the Mie Resonance of Conductive Polyaniline Nanospheres.

Polyaniline (PANI), a conductive polymer, is a promising active material for optical switching. In most studies, active switching has so far been realized only between two states, whereas PANI has a total of six states. The optical properties of nanoscale PANI in all six states have remained unclear. Herein we report on all-state switching of the Mie resonance on PANI nanospheres (NSs) and active plasmon switching on PANI-coated Au nanodisks (NDs). All-state switching of differently sized PANI NSs is achieved by proton doping/dedoping and electrochemical methods. Theoretical studies show that the scattering peaks of the individual PANI NSs originate from Mie resonances. All-state switching is further demonstrated on PANI-coated circular Au NDs, where an unprecedentedly large plasmon peak shift of ∼200 nm is realized. Our study not only provides a fundamental understanding of the optical properties of PANI but also opens the probability for developing high-performance dynamic media for active plasmonics.

[1]  V. Stanishev,et al.  Electrical Tuning of Plasmonic Conducting Polymer Nanoantennas. , 2021, Advanced materials.

[2]  M. Hentschel,et al.  Electrically switchable metallic polymer nanoantennas , 2021, Science.

[3]  S. Xiao,et al.  Dynamic Structural Colors Based on All‐Dielectric Mie Resonators , 2021, Advanced Optical Materials.

[4]  Jianfang Wang,et al.  Directional Control of Light with Nanoantennas , 2020, Advanced Optical Materials.

[5]  Jianfang Wang,et al.  Substrate-Enabled Plasmonic Color Switching with Colloidal Gold Nanorings , 2020 .

[6]  D. Tsai,et al.  All-dielectric metasurface for high-performance structural color , 2020, Nature Communications.

[7]  Zhiyong Guo,et al.  Macroscopic Au@PANI Core/shell Nanoparticle Superlattice Monolayer Film with Dual-responsive Plasmonic Switches. , 2020, ACS applied materials & interfaces.

[8]  Sergey Kruk,et al.  Subwavelength dielectric resonators for nonlinear nanophotonics , 2020, Science.

[9]  J. Puigdollers,et al.  Enhanced chiral sensing with dielectric nano-resonators. , 2019, Nano letters.

[10]  V. Stanishev,et al.  Conductive polymer nanoantennas for dynamic organic plasmonics , 2019, Nature Nanotechnology.

[11]  Jianfang Wang,et al.  Colloidal Gold Nanorings and Their Plasmon Coupling with Gold Nanospheres. , 2019, Small.

[12]  Jianfang Wang,et al.  Chemically Synthesized Electromagnetic Metal Oxide Nanoresonators , 2019, Advanced Optical Materials.

[13]  Stephen J. Bauman,et al.  Dynamic Plasmonic Pixels. , 2019, ACS nano.

[14]  Yadong Yin,et al.  Stimuli‐Responsive Optical Nanomaterials , 2019, Advanced materials.

[15]  Mikael Käll,et al.  Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators , 2018, Nature Nanotechnology.

[16]  J. Nam,et al.  Nonnoble‐Metal‐Based Plasmonic Nanomaterials: Recent Advances and Future Perspectives , 2018, Advanced materials.

[17]  O. N. Oliveira,et al.  Plasmonic Biosensing. , 2018, Chemical reviews.

[18]  Suljo Linic,et al.  Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures , 2018, Nature Catalysis.

[19]  Jianfang Wang,et al.  Circular Gold Nanodisks with Synthetically Tunable Diameters and Thicknesses , 2018 .

[20]  Bo Han Chen,et al.  A broadband achromatic metalens in the visible , 2018, Nature Nanotechnology.

[21]  Jianfang Wang,et al.  Active Plasmonics: Principles, Structures, and Applications. , 2017, Chemical reviews.

[22]  Hiroaki Misawa,et al.  Solid-State Plasmonic Solar Cells. , 2017, Chemical reviews.

[23]  Jianfang Wang,et al.  Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration , 2017 .

[24]  Jianfang Wang,et al.  Dielectric nanoresonators for light manipulation , 2017 .

[25]  Na Liu,et al.  Dynamic plasmonic colour display , 2017, Nature Communications.

[26]  Jianfang Wang,et al.  Active Electrochemical Plasmonic Switching on Polyaniline‐Coated Gold Nanocrystals , 2017, Advanced materials.

[27]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[28]  P. Nordlander,et al.  Plasmonic colour generation , 2017 .

[29]  Yu Jin Jang,et al.  Plasmonic Solar Cells: From Rational Design to Mechanism Overview. , 2016, Chemical reviews.

[30]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[31]  M. El-Sayed,et al.  Dual-Responsive Reversible Plasmonic Behavior of Core–Shell Nanostructures with pH-Sensitive and Electroactive Polymer Shells , 2016 .

[32]  Nicolas Bonod,et al.  All-Dielectric Colored Metasurfaces with Silicon Mie Resonators. , 2016, ACS nano.

[33]  M. El-Sayed,et al.  Electrically Controlled Plasmonic Behavior of Gold Nanocube@Polyaniline Nanostructures: Transparent Plasmonic Aggregates , 2016 .

[34]  Jianfang Wang,et al.  Thickness Control Produces Gold Nanoplates with Their Plasmon in the Visible and Near‐Infrared Regions , 2016 .

[35]  Jianfang Wang,et al.  Colloidal Moderate‐Refractive‐Index Cu2O Nanospheres as Visible‐Region Nanoantennas with Electromagnetic Resonance and Directional Light‐Scattering Properties , 2015, Advanced materials.

[36]  Suljo Linic,et al.  Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[37]  Michael J. McClain,et al.  Molecular Plasmonics. , 2015, Nano letters.

[38]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[39]  A. Datta,et al.  Doping of polyaniline with 6-cyano-2-naphthol. , 2014, The journal of physical chemistry. B.

[40]  Jianfang Wang,et al.  (Gold Nanorod Core)/(Polyaniline Shell) Plasmonic Switches with Large Plasmon Shifts and Modulation Depths , 2014, Advanced materials.

[41]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[42]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[43]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[44]  P. Nordlander,et al.  Tunable molecular plasmons in polycyclic aromatic hydrocarbons. , 2013, ACS nano.

[45]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[46]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[47]  G. M. Nascimento,et al.  Spectroscopy of Nanostructured Conducting Polymers , 2010 .

[48]  S. H. Park,et al.  Metallic transport in polyaniline , 2006, Nature.