Modest Clostridiodes difficile infection prediction using machine learning models in a tertiary care hospital.

[1]  S. Cosgrove,et al.  Prescriber Behavior in Clostridioides difficile Testing: A 3-Hospital Diagnostic Stewardship Intervention. , 2019, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  Steven W. Johnson,et al.  Development of a risk prediction model for hospital‐onset Clostridium difficile infection in patients receiving systemic antibiotics , 2019, American journal of infection control.

[3]  E. Shortliffe,et al.  Clinical Decision Support in the Era of Artificial Intelligence. , 2018, JAMA.

[4]  Julia E. Vogt,et al.  Introduction to Machine Learning in Digital Healthcare Epidemiology , 2018, Infection Control & Hospital Epidemiology.

[5]  A. Guh,et al.  Clostridioides difficile Infection , 2018, Annals of Internal Medicine.

[6]  Jenna Wiens,et al.  A Generalizable, Data-Driven Approach to Predict Daily Risk of Clostridium difficile Infection at Two Large Academic Health Centers , 2018, Infection Control & Hospital Epidemiology.

[7]  K. Carroll,et al.  Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[8]  Sara G. Murray,et al.  Using Spatial and Temporal Mapping to Identify Nosocomial Disease Transmission of Clostridium difficile , 2017, JAMA internal medicine.

[9]  Erick R. Scott,et al.  Estimating Local Costs Associated With Clostridium difficile Infection Using Machine Learning and Electronic Medical Records , 2017, Infection Control & Hospital Epidemiology.

[10]  Chongsheng Zhang,et al.  Feature selection and resampling in class imbalance learning: Which comes first? An empirical study in the biological domain , 2017, 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[11]  J. Sanders,et al.  The Impact of Diagnostic Stewardship on Clostridium difficile Infections , 2017, Open Forum Infectious Diseases.

[12]  G. Escobar,et al.  Prediction of Recurrent Clostridium Difficile Infection Using Comprehensive Electronic Medical Records in an Integrated Healthcare Delivery System , 2017, Infection Control & Hospital Epidemiology.

[13]  A. Marra,et al.  Failure of Risk-Adjustment by Test Method for C. difficile Laboratory-Identified Event Reporting , 2016, Infection Control & Hospital Epidemiology.

[14]  Kyoungmi Kim,et al.  Overdiagnosis of Clostridium difficile Infection in the Molecular Test Era. , 2015, JAMA internal medicine.

[15]  Margaret A Dudeck,et al.  Evaluating the Use of the Case Mix Index for Risk Adjustment of Healthcare-Associated Infection Data: An Illustration using Clostridium difficile Infection Data from the National Healthcare Safety Network , 2015, Infection Control & Hospital Epidemiology.

[16]  Ella S. Franklin,et al.  Learning Data-Driven Patient Risk Stratification Models for Clostridium difficile , 2014, Open forum infectious diseases.

[17]  D. Crook,et al.  Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection , 2013, The Lancet. Infectious diseases.

[18]  E. Lofgren,et al.  Impact of Change to Molecular Testing for Clostridium difficile Infection on Healthcare Facility–Associated Incidence Rates , 2013, Infection Control & Hospital Epidemiology.

[19]  K. Carroll,et al.  Diagnosis of Clostridium difficile Infection: an Ongoing Conundrum for Clinicians and for Clinical Laboratories , 2013, Clinical Microbiology Reviews.

[20]  T. Kirn,et al.  Effective utilization of evolving methods for the laboratory diagnosis of Clostridium difficile infection. , 2011, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[21]  K. Welch,et al.  Evaluation of Hospital Room Assignment and Acquisition of Clostridium difficile Infection , 2011, Infection Control & Hospital Epidemiology.

[22]  W. Rutala,et al.  Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species. , 2010, American journal of infection control.

[23]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[24]  Annette M. Molinaro,et al.  Prediction error estimation: a comparison of resampling methods , 2005, Bioinform..

[25]  K. Lunetta,et al.  Screening large-scale association study data: exploiting interactions using random forests , 2004, BMC Genetics.

[26]  S. Gorbach Antibiotics and Clostridium difficile. , 1999, The New England journal of medicine.

[27]  L. Peterson,et al.  Clostridium Difficile-Associated Diarrhea and Colitis , 1995, Infection Control & Hospital Epidemiology.

[28]  C. Pothoulakis,et al.  Clostridium difficile colitis. , 1994, The New England journal of medicine.

[29]  S. Cessie,et al.  Ridge Estimators in Logistic Regression , 1992 .

[30]  อนิรุธ สืบสิงห์ Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[31]  Vipin Kumar,et al.  Introduction to Data Mining , 2005 .

[32]  L. Breiman Random Forests , 2001, Machine Learning.