A Subalgebra Intersection Property for Congruence Distributive Varieties

Abstract We prove that if a finite algebra $\mathbf{A}$ generates a congruence distributive variety, then the subalgebras of the powers of $\mathbf{A}$ satisfy a certain kind of intersection property that fails for finite idempotent algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this property and the constraint satisfaction problem.

[1]  K. A. Baker,et al.  Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems , 1975 .

[2]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[3]  D. Hobby,et al.  The structure of finite algebras , 1988 .

[4]  M. Valeriote Finite simple abelian algebras are strictly simple , 1990 .

[5]  James B. Nation,et al.  Problems and Results in Tame Congruence Theory a Survey of the '88 Budapest Workshop , 1992 .

[6]  Emil W. Kiss,et al.  Problems and results in tame congruence theory. A survey of the '88 Budapest workshop , 1992 .

[7]  Joel Berman,et al.  The set of types of a finitely generated variety , 1993, Discret. Math..

[8]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[9]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[10]  Martin C. Cooper,et al.  Constraints, Consistency and Closure , 1998, Artif. Intell..

[11]  P. Jeavons Algebraic structures in combinatorial problems , 2001 .

[12]  Andrei A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[13]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[14]  Emil W. Kiss,et al.  On Tractability and Congruence Distributivity , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[15]  B. Larose,et al.  Bounded width problems and algebras , 2007 .

[16]  Ralph Freese,et al.  On the Complexity of Some Maltsev Conditions , 2009, Int. J. Algebra Comput..

[17]  Klaus Denecke,et al.  Tame Congruence Theory , 2018, Universal Algebra and Applications in Theoretical Computer Science.