Electrophysiological Correlates of Morphological Neuroplasticity in Human Callosal Dysgenesis

In search for the functional counterpart of the alternative Probst and sigmoid bundles, considered as morphological evidence of neuroplasticity in callosal dysgenesis, electroencephalographic (EEG) coherence analysis was combined with high resolution and diffusion tensor magnetic resonance imaging. Data of two patients with callosal agenesis, plus two with typical partial dysgenesis with a remnant genu, and one atypical patient with a substantially reduced genu were compared to those of fifteen neurotypic controls. The interhemispheric EEG coherence between homologous nontemporal brain regions corresponded to absence or partial presence of callosal connections. A generalized coherence reduction was observed in complete acallosal patients, as well as coherence preservation in the anterior areas of the two patients with a remnant genu. jThe sigmoid bundles found in three patients with partial dysgenesis correlated with augmented EEG coherence between anterior regions of one hemisphere and posterior regions of the other. These heterologous (crossed) interhemispheric connections were asymmetric in both imaging and EEG patterns, with predominance of the right-anterior-to-left-posterior connections over the mirror ones. The Probst bundles correlated with higher intrahemispheric long-distance coherence in all patients. The significant correlations observed for the delta, theta and alpha bands indicate that these alternative pathways are functional, although the neuropsychological nature of this function is still unknown.

[1]  T. Nielsen,et al.  Interhemispheric EEG Coherence before and after Partial Callosotomy , 1990, Clinical EEG.

[2]  Srikantan S. Nagarajan,et al.  The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing , 2012, PloS one.

[3]  Michael S. Gazzaniga,et al.  Interhemispheric relationships: the neocortical commissures; syndromes of hemisphere disconnection , 1969 .

[4]  D. Tucker,et al.  EEG coherency. I: Statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. , 1997, Electroencephalography and clinical neurophysiology.

[5]  Georg Langs,et al.  Disrupted developmental organization of the structural connectome in fetuses with corpus callosum agenesis , 2015, NeuroImage.

[6]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[7]  V. Lazarev,et al.  Reduced Interhemispheric Connectivity in Childhood Autism Detected by Electroencephalographic Photic Driving Coherence , 2013, Journal of Autism and Developmental Disorders.

[8]  M Lassonde,et al.  Decreased interhemispheric EEG coherence during sleep in agenesis of the corpus callosum. , 1993, European neurology.

[9]  Daniel P. Kennedy,et al.  Intact Bilateral Resting-State Networks in the Absence of the Corpus Callosum , 2011, The Journal of Neuroscience.

[10]  W. J. Williams,et al.  Measuring the coherence of intracranial electroencephalograms , 1999, Clinical Neurophysiology.

[11]  Roberto Lent,et al.  Neuroplasticity in human callosal dysgenesis: a diffusion tensor imaging study. , 2006, Cerebral cortex.

[12]  A James Barkovich,et al.  Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. , 2014, Brain : a journal of neurology.

[13]  D. Tucker,et al.  Functional connections among cortical regions: topography of EEG coherence. , 1986, Electroencephalography and clinical neurophysiology.

[14]  T. Nielsen,et al.  Sleep architecture in agenesis of the corpus callosum: laboratory assessment of four cases , 1992, Journal of sleep research.

[15]  Eric J. Friedman,et al.  The structural connectome of the human brain in agenesis of the corpus callosum , 2013, NeuroImage.

[16]  John F. Stein,et al.  subthalamic nucleus , 2004 .

[17]  J. Vos,et al.  Coherence patterns of the infant sleep EEG in absence of the corpus callosum. , 1987, Electroencephalography and clinical neurophysiology.

[18]  R. Adolphs,et al.  Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity , 2007, Nature Reviews Neuroscience.

[19]  M. Lassonde,et al.  Interhemispheric integration of sensory and motor functions in agenesis of the corpus callosum , 1981, Neuropsychologia.

[20]  F. D. Silva EEG: Origin and Measurement , 2009 .

[21]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[22]  D. G. Watts,et al.  Spectral analysis and its applications , 1968 .

[23]  M. Knyazeva,et al.  The EEG in acallosal children. Coherence values in the resting state: left hemisphere compensatory mechanism? , 1995, Electroencephalography and clinical neurophysiology.

[24]  C. Blakemore,et al.  Agenesis of the corpus callosum: a behavioural investigation. , 1972, Brain : a journal of neurology.

[25]  Louis Lemieux,et al.  EEG-fMRI; Physiological Basis, Technique, and Applications , 2010 .

[26]  A. Barkovich,et al.  Variability of Homotopic and Heterotopic Callosal Connectivity in Partial Agenesis of the Corpus Callosum: A 3T Diffusion Tensor Imaging and Q-Ball Tractography Study , 2008, American Journal of Neuroradiology.

[27]  M. Lassonde,et al.  Absence of disconnexion syndrome in callosal agenesis and early callosotomy: Brain reorganization or lack of structural specificity during ontogeny? , 1991, Neuropsychologia.

[28]  M. N. Livanov Spatial organization of cerebral processes , 1977 .

[29]  D. Purdie Statistical Methods in Medical Research, 4th edn , 2003 .

[30]  J. Shaw Rhythmic EEG activities and cortical functioning G. Pfurtscheller, P. Buser, F.H. Lopes Da Silva and H. Petsche (Eds.) Elsevier North-Holland, Amsterdam, 1980, pp. 314 Df. 100 , 1982, Biological Psychology.

[31]  Wenyaw Chan,et al.  Statistical Methods in Medical Research , 2013, Model. Assist. Stat. Appl..

[32]  G. Carter Coherence and time delay estimation , 1987, Proceedings of the IEEE.

[33]  V. V. Lazarev,et al.  Interhemispheric asymmetry in EEG photic driving coherence in childhood autism , 2010, Clinical Neurophysiology.

[34]  R. Barry,et al.  EEG power and coherence in autistic spectrum disorder , 2008, Clinical Neurophysiology.

[35]  M. Spencer-Smith,et al.  Neuropsychological Profile of Agenesis of the Corpus Callosum: A Systematic Review , 2013, Developmental neuropsychology.

[36]  M Matsuura,et al.  Lower Interhemispheric Coherence in a Case of Agenesis of the Corpus Callosum , 1994, Clinical EEG.

[37]  Moriz Probst,et al.  Ueber den Bau des vollständig balkenlosen Gross-hirnes sowie über Mikrogyrie und Heterotopie der grauen Substanz , 1901, Archiv für Psychiatrie und Nervenkrankheiten.

[38]  H. Möller,et al.  EEG coherence reflects regional corpus callosum area in Alzheimer’s disease , 2004, Journal of Neurology, Neurosurgery & Psychiatry.

[39]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[40]  Timothy E. J. Behrens,et al.  Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum , 2014, Proceedings of the National Academy of Sciences.

[41]  Fernando Lopes da Silva,et al.  Comprar Niedermeyer's Electroencephalography, 6/e (Basic Principles, Clinical Applications, and Related Fields ) | Fernando Lopes Da Silva | 9780781789424 | Lippincott Williams & Wilkins , 2010 .

[42]  C. Plachez,et al.  Mechanisms regulating the development of the corpus callosum and its agenesis in mouse and human , 2004, Clinical genetics.

[43]  Hangyi Jiang,et al.  DtiStudio: Resource program for diffusion tensor computation and fiber bundle tracking , 2006, Comput. Methods Programs Biomed..