Long term prediction of non-linear time series using multiresolution wavelet models

The long term prediction of non-linear dynamical time series, based on identified multiresolution wavelet models, from historically observed data sets is investigated and a new direct prediction approach is introduced. Prediction results based on the new direct scheme are compared with those from iterative methods and it is shown that improved predictions can be obtained using the new approach.

[1]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[2]  J. Stock,et al.  A Comparison of Direct and Iterated Multistep Ar Methods for Forecasting Macroeconomic Time Series , 2005 .

[3]  S. A. Billings,et al.  The wavelet-NARMAX representation: A hybrid model structure combining polynomial models with multiresolution wavelet decompositions , 2005, Int. J. Syst. Sci..

[4]  N. Wermuth,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[5]  Daniel R. Lynch,et al.  Barotropic tides in the South Atlantic Bight , 2004 .

[6]  S. Billings,et al.  Prediction of the Dst index using multiresolution wavelet models , 2004 .

[7]  Steve A. Billings,et al.  A unified wavelet-based modelling framework for non-linear system identification: the WANARX model structure , 2004 .

[8]  Steve A. Billings,et al.  Term and variable selection for non-linear system identification , 2004 .

[9]  Ching-Kang Ing,et al.  MULTISTEP PREDICTION IN AUTOREGRESSIVE PROCESSES , 2003, Econometric Theory.

[10]  S. A. Billings,et al.  A new direct approach of computing multi-step ahead predictions for non-linear models , 2003 .

[11]  Steve A. Billings,et al.  Identification of Time-Varying Systems Using Multiresolution Wavelet Models , 2003 .

[12]  James McNames,et al.  Local averaging optimization for chaotic time series prediction , 2002, Neurocomputing.

[13]  R. Ghanem,et al.  A wavelet-based approach for model and parameter identification of non-linear systems , 2001 .

[14]  Stergios B. Fotopoulos,et al.  Discrete-Time Dynamic Models , 2001, Technometrics.

[15]  David B. H. Tay,et al.  Time-varying parametric system multiresolution identification by wavelets , 2001, Int. J. Syst. Sci..

[16]  Skander Soltani,et al.  On the use of the wavelet decomposition for time series prediction , 2002, ESANN.

[17]  M. Small,et al.  Towards long-term prediction , 2000 .

[18]  Fernanda Strozzi,et al.  Forecasting high waters at Venice Lagoon using chaotic time series analysis and nonlinear neural networks , 2000 .

[19]  Amir F. Atiya,et al.  Multi-step-ahead prediction using dynamic recurrent neural networks , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[20]  S. Billings,et al.  DISCRETE WAVELET MODELS FOR IDENTIFICATION AND QUALITATIVE ANALYSIS OF CHAOTIC SYSTEMS , 1999 .

[21]  Amir F. Atiya,et al.  A comparison between neural-network forecasting techniques-case study: river flow forecasting , 1999, IEEE Trans. Neural Networks.

[22]  Jay A. Farrell,et al.  Wavelet-based system identification for nonlinear control , 1999, IEEE Trans. Autom. Control..

[23]  David Allingham,et al.  Wavelet reconstruction of nonlinear dynamics , 1998 .

[24]  Michael Y. Hu,et al.  Forecasting with artificial neural networks: The state of the art , 1997 .

[25]  Qinghua Zhang,et al.  Using wavelet network in nonparametric estimation , 1997, IEEE Trans. Neural Networks.

[26]  Daniel Coca,et al.  Continuous-Time System Identification for Linear and Nonlinear Systems Using Wavelet Decompositions , 1997 .

[27]  R. J. Bhansali,et al.  DIRECT AUTOREGRESSIVE PREDICTORS FOR MULTISTEP PREDICTION: ORDER SELECTION AND PERFORMANCE RELATIVE TO THE PLUG IN PREDICTORS , 1997 .

[28]  Peter Tiño,et al.  Learning long-term dependencies in NARX recurrent neural networks , 1996, IEEE Trans. Neural Networks.

[29]  Stephen A. Billings,et al.  The Determination of Multivariable Nonlinear Models for Dynamic Systems Using neural Networks , 1996 .

[30]  Liangyue Cao,et al.  Predicting chaotic time series with wavelet networks , 1995 .

[31]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[32]  Thomas Kolarik,et al.  Time series forecasting using neural networks , 1994, APL '94.

[33]  Marcus O'Connor,et al.  Artificial neural network models for forecasting and decision making , 1994 .

[34]  Georgios B. Giannakis,et al.  Time-varying system identification and model validation using wavelets , 1993, IEEE Trans. Signal Process..

[35]  Zehua Chen Fitting Multivariate Regression Functions by Interaction Spline Models , 1993 .

[36]  Jose C. Principe,et al.  Prediction of Chaotic Time Series with Neural Networks , 1992 .

[37]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[38]  Jiménez,et al.  Forecasting on chaotic time series: A local optimal linear-reconstruction method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  Paul A. Fishwick,et al.  Time series forecasting using neural networks vs. Box- Jenkins methodology , 1991, Simul..

[40]  S. A. Billings,et al.  Model validity tests for non-linear signal processing applications , 1991 .

[41]  D. Rumelhart,et al.  Predicting sunspots and exchange rates with connectionist networks , 1991 .

[42]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .

[43]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[44]  Sheng Chen,et al.  Modelling and analysis of non-linear time series , 1989 .

[45]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[46]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Martin Casdagli,et al.  Nonlinear prediction of chaotic time series , 1989 .

[48]  S. Billings,et al.  Orthogonal parameter estimation algorithm for non-linear stochastic systems , 1988 .

[49]  Sheng Chen,et al.  Identification of non-linear output-affine systems using an orthogonal least-squares algorithm , 1988 .

[50]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[51]  Shien-Ming Wu,et al.  Time series and system analysis with applications , 1983 .

[52]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[53]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .