Mechanism mobility and a local dimension test

[1]  Martin Grübler,et al.  Getriebelehre : Eine Theorie des Zwanglaufes und der ebenen Mechanismen , 1917 .

[2]  E. Davison,et al.  The numerical solution of A'Q+QA =-C , 1968 .

[3]  J. Hervé Analyse structurelle des mcanismes par groupe des dplacements , 1978 .

[4]  D. Kirby THE ALGEBRAIC THEORY OF MODULAR SYSTEMS , 1996 .

[5]  Vincenzo Parenti-Castelli,et al.  Recent advances in robot kinematics , 1996 .

[6]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[7]  Jan Verschelde,et al.  Advances in Polynomial Continuation for Solving Problems in Kinematics , 2002 .

[8]  Adolf Karger Architecture singular planar parallel manipulators , 2003 .

[9]  Jaime Gallardo-Alvarado,et al.  Lie Algebra and the Mobility of Kinematic Chains , 2003, J. Field Robotics.

[10]  G. Gogu Mobility of mechanisms: a critical review , 2005 .

[11]  Zhonggang Zeng,et al.  Computing the multiplicity structure in solving polynomial systems , 2005, ISSAC.

[12]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[13]  Jing-Shan Zhao,et al.  Computation of the configuration degree of freedom of a spatial parallel mechanism by using reciprocal screw theory , 2006 .

[14]  Chris Peterson,et al.  A numerical-symbolic algorithm for computing the multiplicity of a component of an algebraic set , 2006, J. Complex..

[15]  Charles W. Wampler,et al.  Finding All Real Points of a Complex Curve , 2006 .

[16]  Arthur G. Erdman,et al.  A New Mobility Formula for Spatial Mechanisms , 2007 .

[17]  Bahram Ravani,et al.  On Calculating the Degrees of Freedom or Mobility of Overconstrained Linkages: Single-Loop Exceptional Linkages , 2007 .

[18]  Manfred L. Husty,et al.  Algebraic methods in mechanism analysis and synthesis , 2007, Robotica.

[19]  A. Müller Generic Mobility of Rigid Body Mechanisms: On the Existence of Overconstrained Mechanisms , 2007 .

[20]  ZHONGGANG ZENG The Closedness Subspace Method for Computing the Multiplicity Structure of a Polynomial System , 2008 .

[21]  Manfred Husty,et al.  A complete kinematic analysis of the SNU 3-UPU parallel robot , 2009 .

[22]  Frank-Olaf Schreyer,et al.  A family of exceptional Stewart-Gough mechanisms of genus 7 , 2009, 0902.2354.

[23]  Jonathan D. Hauenstein,et al.  A Numerical Local Dimension Test for Points on the Solution Set of a System of Polynomial Equations , 2009, SIAM J. Numer. Anal..

[24]  Jonathan D. Hauenstein,et al.  Regeneration homotopies for solving systems of polynomials , 2010, Math. Comput..

[25]  M. Husty,et al.  A Proposal for a New Definition of the Degree of Freedom of a Mechanism , 2012 .