Solar Surface and Atmospheric Dynamics. The Photosphere

Various aspects of the magnetism of the quiet sun are reviewed. The suggestion that a small scale dynamo acting at granular scales generates what we call the quiet sun fields is studied in some detail. Although dynamo action has been proved numerically, it is argued that current simulations are still far from achieving the complexity that might be present on the Sun. We based this statement not so much on the low magnetic Reynolds numbers used in the simulations but, above all, in the smallness of the kinetic Reynolds numbers employed by them. It is argued that the low magnetic Prandtl number at the solar surface may pose unexpected problems for the identification of the observed internetwork fields with dynamo action at granular scales. Some form of turbulent dynamo at bigger (and deeper) scales is favored. The comparison between the internetwork fields observed by Hinode and the magnetism inferred from Hanle measurements are converging towards a similar description. They are both described as randomly oriented, largely transverse fields in the several hecto-Gauss range. These similarities are ever making more natural to assume that they are the same. However, and because of the large voids of magnetic flux observed in the spatial distribution of the internetwork fields, it is argued that they are not likely to be generated by dynamo action in the intergranular lanes. It is concluded that if a dynamo is acting at granular scales, the end product might have not been observed yet at current spatial resolutions and sensitivities with the Zeeman effect. Thus an effort to increase these resolutions and polarimetric sensitivities must be made. New ground- and space-based telescopes are needed. The opportunity offered by the Solar Orbiter mission to observe the Quiet Sun dynamics at the poles is seen as one of the most important tests for confirming the existence, or otherwise, of a granularly driven surface dynamo.

[1]  N. Shchukina,et al.  DETERMINING THE MAGNETIZATION OF THE QUIET SUN PHOTOSPHERE FROM THE HANLE EFFECT AND SURFACE DYNAMO SIMULATIONS , 2011, 1103.5652.

[2]  J. McWilliams,et al.  Critical magnetic Prandtl number for small-scale dynamo. , 2003, Physical review letters.

[3]  R. Cameron,et al.  TURBULENT SMALL-SCALE DYNAMO ACTION IN SOLAR SURFACE SIMULATIONS , 2010, 1002.2750.

[4]  Haosheng Lin,et al.  On the Distribution of the Solar Magnetic Fields , 1995 .

[5]  Jen‐Ping Chen,et al.  METHANE–NITROGEN BINARY NUCLEATION: A NEW MICROPHYSICAL MECHANISM FOR CLOUD FORMATION IN TITAN'S ATMOSPHERE , 2012 .

[6]  L. B. Rubio,et al.  EMERGENCE OF SMALL-SCALE MAGNETIC LOOPS THROUGH THE QUIET SOLAR ATMOSPHERE , 2009, 0905.2691.

[7]  Fausto Cattaneo,et al.  On the Origin of Magnetic Fields in the Quiet Photosphere , 1999 .

[8]  M. Schuessler,et al.  A solar surface dynamo , 2007, astro-ph/0702681.

[9]  R. Rezaei,et al.  Recent Advances in the Exploration of the Small-Scale Structure of the Quiet Solar Atmosphere: Vortex Flows, the Horizontal Magnetic Field, and the Stokes-V Line-Ratio Method , 2012, 1202.4040.

[10]  J. C. del Toro Iniesta,et al.  MESOGRANULATION AND THE SOLAR SURFACE MAGNETIC FIELD DISTRIBUTION , 2010, 1012.4481.

[11]  E. Hijano,et al.  DEAD CALM AREAS IN THE VERY QUIET SUN , 2012, 1206.4545.

[12]  S. Tsuneta,et al.  THE RELATIONSHIP BETWEEN VERTICAL AND HORIZONTAL MAGNETIC FIELDS IN THE QUIET SUN , 2011, 1103.5556.

[13]  S. Solanki,et al.  Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo , 2010, 1001.2183.

[14]  S. Tsuneta,et al.  Emergence of Small-Scale Magnetic Loops in the Quiet-Sun Internetwork , 2007, 0708.0844.

[15]  J. C. del Toro Iniesta,et al.  To appear in ApJ Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 QUIET SUN INTERNETWORK MAGNETIC FIELDS FROM THE INVERSION OF HINODE MEASUREMENTS , 2022 .

[16]  Dirk Soltau,et al.  European Solar Telescope: Progress status , 2010 .

[17]  Tenerife,et al.  The Magnetic Fields of the Quiet Sun , 2011, 1105.0387.

[18]  T. Verhoelst,et al.  Periodic mass-loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD 50064 , 2010, 1003.5551.

[19]  H. Spruit A model of the solar convection zone , 1974 .

[20]  B. Jurcevich,et al.  The Solar Optical Telescope for the Hinode Mission: An Overview , 2007, 0711.1715.

[21]  R. Kraft,et al.  MARKARIAN 6: SHOCKING THE ENVIRONMENT OF AN INTERMEDIATE SEYFERT , 2011, 1101.6000.

[22]  J. Borrero,et al.  Inferring the magnetic field vector in the quiet Sun - I. Photon noise and selection criteria , 2010, 1011.4380.

[23]  B. Lites,et al.  HINODE OBSERVATIONS SUGGESTING THE PRESENCE OF A LOCAL SMALL-SCALE TURBULENT DYNAMO , 2011 .

[24]  K. Petrovay,et al.  The origin of intranetwork fields: a small-scale solar dynamo , 1993 .

[25]  M. Schuessler,et al.  TURBULENT MAGNETIC FIELDS IN THE QUIET SUN: IMPLICATIONS OF HINODE OBSERVATIONS AND SMALL-SCALE DYNAMO SIMULATIONS , 2008, 0812.2125.

[26]  Achim M. Gandorfer,et al.  The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager (SO/PHI) , 2011 .

[27]  V. Pillet,et al.  Small scale horizontal magnetic fields in the solar photosphere , 1996 .

[28]  T. Kosugi,et al.  The Hinode (Solar-B) Mission: An Overview , 2007 .

[29]  Imperial College London,et al.  Simulations of the Small-Scale Turbulent Dynamo , 2003, astro-ph/0312046.

[30]  On the polarimetric signature of emerging magnetic loops in the quiet-Sun , 2012, 1201.6501.

[31]  Robert F. Stein,et al.  Solar Small-Scale Magnetoconvection , 2006 .

[32]  M. Schuessler,et al.  Strong horizontal photospheric magnetic field in a surface dynamo simulation , 2008, 0801.1250.

[33]  J. Stenflo,et al.  The Hanle effect and the diagnostics of turbulent magnetic fields in the solar atmosphere , 1982 .

[34]  J. C. del Toro Iniesta,et al.  TRANSVERSE COMPONENT OF THE MAGNETIC FIELD IN THE SOLAR PHOTOSPHERE OBSERVED BY Sunrise , 2010, 1008.1535.

[35]  C. Schrijver,et al.  The Properties of Small Magnetic Regions on the Solar Surface and the Implications for the Solar Dynamo(s) , 2002 .

[36]  A. Brandenburg NONLINEAR SMALL-SCALE DYNAMOS AT LOW MAGNETIC PRANDTL NUMBERS , 2011, 1106.5777.

[37]  Slovakia,et al.  Magnetic loop emergence within a granule , 2009, 0910.4449.

[38]  A. Ramos,et al.  The Hanle Effect in Atomic and Molecular Lines: A New Look at the Sun's Hidden Magnetism , 2006, astro-ph/0612678.

[39]  S. Berdyugina,et al.  Solar turbulent magnetic fields: Non-LTE modeling of the Hanle effect in the C2 molecule , 2011 .

[40]  Javier Trujillo Bueno Modeling Scattering Polarization for Probing Solar Magnetism , 2011 .

[41]  D. Muller,et al.  The Solar Orbiter mission , 2013 .

[42]  L. B. Rubio,et al.  ANALYSIS OF QUIET-SUN INTERNETWORK MAGNETIC FIELDS BASED ON LINEAR POLARIZATION SIGNALS , 2012, 1203.1440.

[43]  J. C. del Toro Iniesta,et al.  The Imaging Magnetograph eXperiment (IMaX) for the Sunrise Balloon-Borne Solar Observatory , 2010, 1009.1095.

[44]  S. K. Solanki,et al.  Small-Scale Solar Magnetic Fields , 2008, 0812.4465.

[45]  PERVASIVE LINEAR POLARIZATION SIGNALS IN THE QUIET SUN , 2012, 1207.0692.

[46]  POLARIZATION OF PHOTOSPHERIC LINES FROM TURBULENT DYNAMO SIMULATIONS , 2002, astro-ph/0211175.

[47]  J. McWilliams,et al.  Fluctuation dynamo and turbulent induction at low magnetic Prandtl numbers , 2007, 0704.2002.

[48]  R. Stein,et al.  Solar Surface Magneto-Convection , 2012 .

[49]  D. F. Gray,et al.  Solar Surface Magneto-Convection , 2022 .

[50]  J. C. del Toro Iniesta,et al.  Optical Tomography of a Sunspot. I. Comparison between Two Inversion Techniques , 1998 .

[51]  A. Asensio Ramos,et al.  EVIDENCE FOR QUASI-ISOTROPIC MAGNETIC FIELDS FROM HINODE QUIET-SUN OBSERVATIONS , 2009, 0906.4230.

[52]  S. Boldyrev,et al.  Magnetic-field generation in Kolmogorov turbulence. , 2003, Physical review letters.

[53]  G. Batchelor On the spontaneous magnetic field in a conducting liquid in turbulent motion , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  J. Stenflo Basal magnetic flux and the local solar dynamo , 2012, 1210.0122.

[55]  J. C. del Toro Iniesta,et al.  Inversion of Stokes profiles , 1992 .

[56]  R. Rezaei,et al.  The Horizontal Internetwork Magnetic Field: Numerical Simulations in Comparison to Observations with Hinode , 2008, 0801.4915.

[57]  A. M. Title,et al.  Statistical Properties of Solar Granulation Derived from the Soup Instrument on Spacelab 2 , 1988 .

[58]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[59]  M. Rieutord,et al.  Velocities and divergences as a function of supergranule size , 2007 .

[60]  S. Solanki,et al.  The Frontier between Small-scale Bipoles and Ephemeral Regions in the Solar Photosphere: Emergence and Decay of an Intermediate-scale Bipole Observed with SUNRISE/IMaX , 2011, 1110.1405.

[61]  C. Keller,et al.  On the strength of solar intra-network fields , 1994 .

[62]  S. Tsuneta,et al.  THREE-DIMENSIONAL VIEW OF TRANSIENT HORIZONTAL MAGNETIC FIELDS IN THE PHOTOSPHERE , 2010, 1003.1376.

[63]  J. C. del Toro Iniesta,et al.  Sunrise: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS , 2010, 1008.3460.

[64]  M. Rieutord,et al.  Dynamo action in stratified convection with overshoot , 1992 .

[65]  A. Asensio Ramos,et al.  A substantial amount of hidden magnetic energy in the quiet Sun , 2004, Nature.

[66]  J. Harvey,et al.  Seething Horizontal Magnetic Fields in the Quiet Solar Photosphere , 2007, astro-ph/0702415.

[67]  M. Schüssler,et al.  UNIVERSALITY OF THE SMALL-SCALE DYNAMO MECHANISM , 2011, 1105.0546.

[68]  W. Abbett,et al.  The Magnetic Connection between the Convection Zone and Corona in the Quiet Sun , 2007 .

[69]  J. McWilliams,et al.  The Onset of a Small-Scale Turbulent Dynamo at Low Magnetic Prandtl Numbers , 2004, astro-ph/0412594.

[70]  T. Berger,et al.  The Horizontal Magnetic Flux of the Quiet-Sun Internetwork as Observed with the Hinode Spectro-Polarimeter , 2008 .