Extreme ultraviolet interference lithography at the Paul Scherrer Institut

We review the performance and applications of an extreme ultraviolet interference lithography (EUV-IL) system built at the Swiss Light Source of the Paul Scherrer Institut (Villigen, Switzerland). The interferometer uses fully coherent radiation from an undulator source. 1-D (line/space) and 2-D (dot/hole arrays) patterns are obtained with a transmission-diffraction-grating type of interferometer. Features with sizes in the range from one micrometer down to the 10-nm scale can be printed in a variety of resists. The highest resolution of 11-nm half-pitch line/space patterns obtained with this method represents a current record for photon based lithography. Thanks to the excellent performance of the system in terms of pattern resolution, uniformity, size of the patterned area, and the throughput, the system has been used in numerous applications. Here we demonstrate the versatility and effectiveness of this emerging nanolithography method through a review of some of the applications, namely, fabrication of metallic and magnetic nanodevice components, self-assembly of Si/Ge quantum dots, chemical patterning of self-assembled monolayers (SAM), and radiation grafting of polymers. (c) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3116559]

[1]  Tim R. Dargaville,et al.  High energy radiation grafting of fluoropolymers , 2003 .

[2]  EUV lithographic radiation grafting of thermo-responsive hydrogel nanostructures , 2007 .

[3]  H. Solak Space-invariant multiple-beam achromatic EUV interference lithography , 2005 .

[4]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[5]  Mu-San Chen,et al.  Fabrication of biological nanostructures by scanning near-field photolithography of chloromethylphenylsiloxane monolayers. , 2006, Nano letters.

[6]  Lenz,et al.  Liquid morphologies on structured surfaces: from microchannels to microchips , 1999, Science.

[7]  Shuqing Sun,et al.  Matching the Resolution of Electron Beam Lithography by Scanning Near-Field Photolithography , 2004 .

[8]  Stephan Krämer,et al.  Scanning probe lithography using self-assembled monolayers. , 2003, Chemical reviews.

[9]  R. Spolenak,et al.  Large area arrays of metal nanowires , 2008 .

[10]  Harun H. Solak,et al.  Nanolithography with coherent extreme ultraviolet light , 2006 .

[11]  Yasin Ekinci,et al.  Bit-array patterns with density over 1Tbit∕in.2 fabricated by extreme ultraviolet interference lithography , 2007 .

[12]  Erik H. Anderson,et al.  Patterning a 50‐nm period grating using soft x‐ray spatial frequency multiplication , 1994 .

[13]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[14]  C. Dais,et al.  Three-dimensional Si/Ge quantum dot crystals. , 2007, Nano letters.

[15]  B. Terris,et al.  Nanofabricated and self-assembled magnetic structures as data storage media , 2005 .

[16]  Paul Zimmerman,et al.  High performance resist for EUV lithography , 2005 .

[17]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008 .

[18]  C. David,et al.  Bilayer Al wire-grids as broadband and high-performance polarizers. , 2006, Optics express.

[19]  E. Anderson,et al.  Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser , 2008 .

[20]  Reinhard Lipowsky,et al.  Morphological Transitions of Wetting Layers on Structured Surfaces , 1998 .

[21]  C. David,et al.  Fabrication of high-resolution zone plates with wideband extreme-ultraviolet holography , 2004 .

[22]  F. Cerrina,et al.  Nanolithography using extreme ultraviolet lithography interferometry: 19 nm lines and spaces , 1999 .

[23]  D. Beebe,et al.  Controlled microfluidic interfaces , 2005, Nature.

[24]  M. Grunze,et al.  Chemical nanolithography with electron beams , 2001 .

[25]  Yasin Ekinci,et al.  Characterization of extreme ultraviolet resists with interference lithography , 2006 .

[26]  M. Tarlov,et al.  UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver , 1993 .

[27]  H. Solak,et al.  Preparation of micro- and nanopatterns of polymer chains grafted onto flexible polymer substrates. , 2004, Journal of the American Chemical Society.

[28]  Dual grating interferometric lithography for 22-nm node , 2007 .

[29]  Thomas Fromherz,et al.  Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates , 2003 .

[30]  Yasin Ekinci,et al.  Extraordinary optical transmission in the ultraviolet region through aluminum hole arrays. , 2007, Optics letters.

[31]  R. Spolenak,et al.  In situ observation of cracks in gold nano-interconnects on flexible substrates , 2008 .

[32]  Oliver G. Schmidt,et al.  Long-range ordered lines of self-assembled Ge islands on a flat Si (001) surface , 2000 .

[33]  C. Dais,et al.  Ge quantum dot molecules and crystals: Preparation and properties , 2007 .

[34]  K. Christman,et al.  Nanopatterning proteins and peptides. , 2006, Soft matter.

[35]  W Baumeister,et al.  Proteasome from Thermoplasma acidophilum: a threonine protease. , 1995, Science.

[36]  M. Welland,et al.  Size effects in the electrical resistivity of polycrystalline nanowires , 2000 .

[37]  Paul Bowen,et al.  Fabrication of large-area ordered arrays of nanoparticles on patterned substrates , 2005 .

[38]  C. David,et al.  Four-wave EUV interference lithography , 2002 .

[39]  H. Solak,et al.  Nanopatterning of gold colloids for label-free biosensing , 2007 .

[40]  C. David,et al.  Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. , 2007, Small.

[41]  Yasin Ekinci,et al.  Photon-beam lithography reaches 12.5nm half-pitch resolution , 2007 .

[42]  Harun H. Solak,et al.  Sub-50 nm period patterns with EUV interference lithography , 2003 .

[43]  M. G. Capeluto,et al.  Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography. , 2007, Optics express.

[44]  Banqiu Wu,et al.  Extreme ultraviolet lithography: A review , 2007 .

[45]  S. Evans,et al.  Gold nanoparticle patterning of silicon wafers using chemical e-beam lithography. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  Laura J. Heyderman,et al.  Nanoscale perpendicular magnetic island arrays fabricated by extreme ultraviolet interference lithography , 2008 .

[47]  P. Zuppella,et al.  Interference lithography by a soft x-ray laser beam: Nanopatterning on photoresists , 2007 .

[48]  H. Solak,et al.  Stamps for nanoimprint lithography by extreme ultraviolet interference lithography , 2004 .

[49]  R. Pantell,et al.  FEL Applications in EUV Lithography , 2005 .

[50]  Anne-Marie Goethals,et al.  Progress in EUV Resist Performance , 2006 .

[51]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[52]  Paul F. Nealey,et al.  Patterning of self-assembled monolayers with lateral dimensions of 0.15 μm using advanced lithography , 1999 .

[53]  S. Lata,et al.  High-affinity chelator thiols for switchable and oriented immobilization of histidine-tagged proteins: a generic platform for protein chip technologies. , 2005, Chemistry.

[54]  R. Tampé,et al.  Molecular Self‐Assembly, Chemical Lithography, and Biochemical Tweezers: A Path for the Fabrication of Functional Nanometer‐Scale Protein Arrays , 2008 .

[55]  B. Nguyen,et al.  Novel nanostructure architectures , 2004 .

[56]  Laura J. Heyderman,et al.  Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization , 2004 .

[57]  C. Dais,et al.  Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly , 2008 .

[58]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[59]  J. F. Young,et al.  Vacuum ultraviolet holography , 1974 .

[60]  Yayi Wei,et al.  Are extreme ultraviolet resists ready for the 32nm node , 2007 .

[61]  E. Weckert,et al.  Review of third and next generation synchrotron light sources , 2005 .

[62]  Kang L. Wang Issues of nanoelectronics: a possible roadmap. , 2002, Journal of nanoscience and nanotechnology.

[63]  M. Snyder,et al.  Protein chip technology. , 2003, Current opinion in chemical biology.

[64]  R. Spolenak,et al.  Tensile strength of gold nanointerconnects without the influence of strain gradients , 2007 .

[65]  Detlev Grützmacher,et al.  Impact of template variations on shape and arrangement of Si/Ge quantum dot arrays , 2008 .