Metal-coordination: Using one of nature's tricks to control soft material mechanics.

Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs.

[1]  Daniel S. Bridges,et al.  An Introduction to Polymer Physics , 2009 .

[2]  Kent N Bachus,et al.  A water-borne adhesive modeled after the sandcastle glue of P. californica. , 2009, Macromolecular bioscience.

[3]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[4]  Devin G. Barrett,et al.  Mussel-inspired histidine-based transient network metal coordination hydrogels. , 2013, Macromolecules.

[5]  E. W. Meijer,et al.  Hierarchical Formation of Supramolecular Transient Networks in Water: A Modular Injectable Delivery System , 2012, Advanced materials.

[6]  K. Raymond,et al.  Coordination chemistry of microbial iron transport. 49. The vanadium(IV) enterobactin complex: structural, spectroscopic, and electrochemical characterization , 1993 .

[7]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[8]  Jonathan J Wilker,et al.  Absorption spectroscopy and binding constants for first-row transition metal complexes of a DOPA-containing peptide. , 2006, Dalton transactions.

[9]  J. Haavik,et al.  Resonance Raman studies of catecholate and phenolate complexes of recombinant human tyrosine hydroxylase. , 1995, Biochemistry.

[10]  S. Craig,et al.  Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. , 2005, Journal of the American Chemical Society.

[11]  Bradley D Olsen,et al.  Reinforcement of Shear Thinning Protein Hydrogels by Responsive Block Copolymer Self‐Assembly , 2013, Advanced functional materials.

[12]  Bruce P. Lee,et al.  A reversible wet/dry adhesive inspired by mussels and geckos , 2007, Nature.

[13]  Jun Yu Li,et al.  Shape‐Memory Effects in Polymer Networks Containing Reversibly Associating Side‐Groups , 2007 .

[14]  S. Craig,et al.  Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. , 2005, Angewandte Chemie.

[15]  E. Bayer,et al.  New Perspectives in the Chemistry and Biochemistry of the Tunichromes and Related Compounds. , 1997, Chemical reviews.

[16]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[17]  S. Werneke,et al.  The role of metals in molluscan adhesive gels , 2007, Journal of Experimental Biology.

[18]  M. Gruebele,et al.  Faculty Opinions recommendation of Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. , 2012 .

[19]  P. Messersmith,et al.  pH responsive self-healing hydrogels formed by boronate-catechol complexation. , 2011, Chemical communications.

[20]  David I. Bower,et al.  An Introduction to Polymer Physics: Frontmatter , 2002 .

[21]  Yasuaki Seki,et al.  Biological materials: Structure and mechanical properties , 2008 .

[22]  Devin G. Barrett,et al.  pH‐Based Regulation of Hydrogel Mechanical Properties Through Mussel‐Inspired Chemistry and Processing , 2013, Advanced functional materials.

[23]  G. Porte,et al.  Associating Polymers: From ``Flowers'' to Transient Networks , 1998 .

[24]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[25]  J. Waite,et al.  Diverse Strategies of Protein Sclerotization in Marine Invertebrates: Structure–Property Relationships in Natural Biomaterials , 2010 .

[26]  G. McKinley,et al.  Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  R. Stewart,et al.  The tube cement of Phragmatopoma californica: a solid foam , 2004, Journal of Experimental Biology.

[28]  C. Tanford Macromolecules , 1994, Nature.

[29]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[30]  K. Raymond,et al.  Coordination Chemistry of Microbial Iron Transport , 1979, Accounts of chemical research.

[31]  M. Sever,et al.  Metal-mediated cross-linking in the generation of a marine-mussel adhesive. , 2004, Angewandte Chemie.

[32]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .