Remote sensing of land degradation: experiences from Latin America and the Caribbean.

Land degradation caused by deforestation, overgrazing, and inappropriate irrigation practices affects about 16% of Latin America and the Caribbean (LAC). This paper addresses issues related to the application of remote sensing technologies for the identification and mapping of land degradation features, with special attention to the LAC region. The contribution of remote sensing to mapping land degradation is analyzed from the compilation of a large set of research papers published between the 1980s and 2009, dealing with water and wind erosion, salinization, and changes of vegetation cover. The analysis undertaken found that Landsat series (MSS, TM, ETM+) are the most commonly used data source (49% of the papers report their use), followed by aerial photographs (39%), and microwave sensing (ERS, JERS-1, Radarsat) (27%). About 43% of the works analyzed use multi-scale, multi-sensor, multi-spectral approaches for mapping degraded areas, with a combination of visual interpretation and advanced image processing techniques. The use of more expensive hyperspectral and/or very high spatial resolution sensors like AVIRIS, Hyperion, SPOT-5, and IKONOS tends to be limited to small surface areas. The key issue of indicators that can directly or indirectly help recognize land degradation features in the visible, infrared, and microwave regions of the electromagnetic spectrum are discussed. Factors considered when selecting indicators for establishing land degradation baselines include, among others, the mapping scale, the spectral characteristics of the sensors, and the time of image acquisition. The validation methods used to assess the accuracy of maps produced with satellite data are discussed as well.

[1]  O. Sala,et al.  Current Distribution of Ecosystem Functional Types in Temperate South America , 2001, Ecosystems.

[2]  D. Dent,et al.  How good is GLASOD? , 2009, Journal of environmental management.

[3]  Adrián Trueba Espinosa,et al.  Identificación de zonas erosionadas mediante el tratamiento de imágenes digitales con una red neuronal , 2004 .

[4]  Alejandro J. Bisigato,et al.  Detection of process‐related changes in plant patterns at extended spatial scales during early dryland desertification , 2003 .

[5]  Xiang Gao,et al.  Land cover conversion and degradation analyses through coupled soil-plant biophysical parameters derived from hyperspectral EO-1 Hyperion , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  C. J. Westen,et al.  Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantánamo, Cuba , 2008 .

[7]  T. Kavzoglu,et al.  Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela , 2005 .

[8]  G. Metternicht,et al.  Improving the discrimination of vegetation and landform patterns in sandy rangelands: a synergistic approach , 2009 .

[9]  Karen K. Kemp Encyclopedia of geographic information science , 2008 .

[10]  J. Parrot,et al.  Extracción automática de trazas de deslizamientos utilizando un modelo digital de terreno e imágenes de satélite de alta resolución IKONOS: Ejemplo en la Sierra Norte de Puebla, México , 2007 .

[11]  Paolo Ferrazzoli,et al.  Monitoring flood condition in marshes using EM models and Envisat ASAR observations , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  G. Metternicht,et al.  Estimating Erosion Surface Features by Linear Mixture Modeling , 1998 .

[13]  Marta Guinau,et al.  A feasible methodology for landslide susceptibility assessment in developing countries: A case-study of NW Nicaragua after Hurricane Mitch , 2005 .

[14]  M. Schaepman,et al.  Proxy global assessment of land degradation , 2008 .

[15]  Anton Vrieling,et al.  Erosion assessment in the Brazilian Cerrados using multi - temporal SAR imagery , 2005 .

[16]  L. Bourrel,et al.  Estudio de la dinamica de las inundaciones en la cuenca Amazonica Boliviana con un enfoque conjunto de la hidrologia y de la percepcion remota , 1999 .

[17]  Anton Van Rompaey,et al.  Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain , 2008 .

[18]  J. Marquínez,et al.  Slope instability in Nicaragua triggered by Hurricane Mitch: distribution of shallow mass movements , 2003 .

[19]  Graciela Metternicht,et al.  Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils using Landsat TM data and a classification based on anion ratios , 2003 .

[20]  Stephen D. Prince,et al.  Mapping land degradation by comparison of vegetation production to spatially derived estimates of potential production , 2008 .

[21]  R. Leemans,et al.  Modelling land degradation in IMAGE 2 , 2001 .

[22]  Emilio Chuvieco,et al.  Satellite remote sensing analysis to monitor desertification processes in the crop-rangeland boundary of Argentina , 2002 .

[23]  H. D. Valle,et al.  Runoff and Erosion in Five Land Units of a Closed Basin of Northeastern Patagonia , 1999 .

[24]  Ben Sonneveld,et al.  Formalizing expert judgements in land degradation assessment: a case study for Ethiopia , 2003 .

[25]  Renaud Mathieu,et al.  Field‐based and spectral indicators for soil erosion mapping in semi‐arid mediterranean environments (Coastal Cordillera of central Chile) , 2007 .

[26]  John M. Melack,et al.  Passive microwave observations of inundation area and the area/stage relation in the Amazon River floodplain , 1998 .

[27]  P. D. Blanco,et al.  Sand dune activity in north-eastern Patagonia , 2008 .

[28]  Luis Recatalá Boix,et al.  Land-Use Planning in the Chaco Plain (Burruyacú, Argentina): Part 2: Generating a Consensus Plan to Mitigate Land-Use Conflicts and Minimize Land Degradation , 2008, Environmental management.

[29]  G. Cuervo Evaluación de imagenes de satélite SAR ERS-1 Y spot-landsat en la cartografia de movimientos en masa , 1997 .

[30]  Steven G. Anthony,et al.  “MIRSED” towards an MIR approach to modelling hillslope soil erosion at the national scale , 2001 .

[31]  D. A. Gagliardini,et al.  Status of desertification in the Patagonian region: Assessment and mapping from satellite imagery , 1998 .

[32]  Graciela Metternicht,et al.  Remote sensing of soil salinity: potentials and constraints , 2003 .

[33]  Graciela Metternicht,et al.  Evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features , 1998 .

[34]  Gregory P. Asner,et al.  DESERTIFICATION IN CENTRAL ARGENTINA: CHANGES IN ECOSYSTEM CARBON AND NITROGEN FROM IMAGING SPECTROSCOPY , 2003 .

[35]  E. Mazzoni,et al.  Ecosistemas de mallines y paisajes de la Patagonia Austral (Provincia de Santa Cruz) , 2004 .

[36]  M. Schomaker Development of environmental indicators in UNEP , 1997 .

[37]  H. L. Perotto-Baldiviezo,et al.  GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras , 2004 .

[38]  P. Veneziani,et al.  Mapa de classes de erodibilidade de parte da região do rio Taquari baseado em imagens TM-Landsat , 1998 .

[39]  J. Vilaplana,et al.  A pragmatic approach to debris flow hazard mapping in areas affected by Hurricane Mitch: example from NW Nicaragua , 2004 .

[40]  Noemi De La Ville,et al.  Remote Sensing and GIS Technologies as Tools to Support Sustainable Management of Areas Devastated by Landslides , 2002 .

[41]  J. Dumanski,et al.  Application of the pressure-state-response framework for the land quality indicators (LQI) programme , 1996 .

[42]  D. Dent,et al.  Global Assessment of Land Degradation and Improvement: pilot study in Kenya , 2006 .

[43]  R. Webster,et al.  Mapping soil salinity from sample data and remote sensing in the former Lake Texcoco, Mexico , 2008 .

[44]  Graciela Metternicht,et al.  Review of Remote Sensing-Based Methods to Assess Soil Salinity , 2008 .

[45]  Shuttle radar images of wind streaks in the Altiplano, Bolivia , 1989 .

[46]  David R. Montgomery,et al.  Topographic controls of landslides in Rio de Janeiro: field evidence and modeling , 2004 .

[47]  Bruce R. Forsberg,et al.  The use of spaceborne radar data to model inundation patterns and trace gas emissions in the central Amazon floodplain , 2002 .

[48]  Graciela Metternicht,et al.  Detecting and monitoring land degradation features and processes in the Cochabamba valleys, Bolivia : a synergistic approach , 1996 .

[49]  Celso Dal,et al.  Mapeamento geomorfológico em escala de semidetalhe da região de Jundiaí-Atibaia , 2003 .

[50]  D. D. L. Rosa,et al.  An expert system/neural network model (ImpelERO) for evaluating agricultural soil erosion in Andalucia region, southern Spain , 1999 .

[51]  I. Alcántara-Ayala,et al.  Slope instability on pyroclastic deposits: Landslide distribution and risk mapping in Zacapoaxtla, Sierra Norte de Puebla, Mexico , 2006 .

[52]  Tal Svoray,et al.  Fuzzy-based dynamic soil erosion model (FuDSEM): Modelling approach and preliminary evaluation , 2008 .

[53]  Matthew C. Larsen,et al.  The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico , 1998 .

[54]  Caracterização de cicatrizes de deslizamentos por processamento de dados TM Landsat em Caraguatatuba - SP , 2004 .

[55]  M. Schaepman,et al.  Global assessment of land degradation and improvement: 1. Identification by remote sensing , 2008 .

[56]  A. Vrieling,et al.  Automatic identification of erosion gullies with ASTER imagery in the Brazilian Cerrados , 2007 .

[57]  S. Navone,et al.  Identification of desertification/degradation using Radarsat image enhancement in lands of Santa Maria. , 2000 .

[58]  David B. Lobell,et al.  Identification of saline soils with multiyear remote sensing of crop yields , 2006 .

[59]  F. Roig,et al.  Soil erosion rates in rangelands of northeastern Patagonia: A dendrogeomorphological analysis using exposed shrub roots , 2009 .

[60]  Achim Röder,et al.  Mediterranean desertification and land degradation: Mapping related land use change syndromes based on satellite observations , 2008 .

[61]  C. M. D. Carvalho,et al.  ANÁLISE DA SUSCETIBILIDADE A ESCORREGAMENTOS NOS ENTORNOS DOS POLIDUTOS DE CUBATÃO-SP, ATRAVÉS DE TÉCNICAS DE INFORMAÇÃO GEOGRÁFICA , 2004 .

[62]  C. King,et al.  The application of remote-sensing data to monitoring and modelling of soil erosion , 2005 .

[63]  G. Metternicht Fuzzy classification of JERS-1 SAR data: an evaluation of its performance for soil salinity mapping , 1998 .

[64]  Jamshid Farifteh,et al.  Imaging Spectroscopy of salt-affected soils: Model-based integrated method, Doctoral dissertation Utrecht University, ITC (Faculty of Geo-Information Science and Earth Observation, University of Twente) Dissertation 143, , 2007 .

[65]  Modelling gully distribution on volcanic terrains in the Huasca area, central Mexico , 1994 .

[66]  E. A. Castellanos Abella,et al.  Multi-scale landslide risk assessment in Cuba , 2008 .

[67]  P. Zeil,et al.  Geoinformation for Development - Bridging the divide through partnerships , 2007 .

[68]  Graciela Metternicht,et al.  Spatial discrimination of salt- and sodium-affected soil surfaces , 1997 .

[69]  Graciela Metternicht,et al.  Spectral Behavior of Salt Types , 2008 .

[70]  S. Moreiras,et al.  Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina , 2005 .

[71]  J. L. Méndez,et al.  RETOS Y PERSPECTIVAS , 2006 .

[72]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[73]  G. Sterk,et al.  Quantification of visual soil erosion indicators in Gikuuri catchment in the central highlands of Kenya , 2006 .

[74]  E. Smaling,et al.  Environmental crisis or ‘lie of the land’? The debate on soil degradation in Africa , 2005 .

[75]  Leonardo Paolini,et al.  Detección de deslizamientos de ladera mediante imágenes Landsat TM: el impacto de estos disturbios sobre los bosques subtropicales del noroeste de Argentina , 2002 .

[76]  Graciela Metternicht,et al.  Remote Sensing of Soil Salinization : Impact on Land Management , 2008 .

[77]  S. L. Kuriakose,et al.  Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview , 2008 .