Superconductor Electronics: Status and Outlook

Superconductor electronics combines passive and active superconducting components and sometimes normal resistors into functional circuits and systems that also include room-temperature electronics for amplification, power sources, necessary controls, etc., usually computer operated. Furthermore, complete systems include magnetic and electromagnetic shielding, cryogenic enclosures, and increasingly a cryocooler in self-contained units. Components or devices of low or high critical temperature superconductors include inductances (coils), passive transmission lines, resonators, antennae, filters, as well as active elements: Josephson junctions, Josephson oscillators, and superconducting quantum interference devices. Of multiple demonstrated applications, mostly but not only in science and metrology, currently most successful are voltage standards, astronomy detectors and large telescope cameras, instruments for material characterization, and magnetometers for geomagnetic prospecting. Major current efforts concentrate on energy-efficient high-end computing and quantum computing. The outcomes of these efforts are likely to be known in the course of the following decade.

[1]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[2]  R. Narayanaswarny,et al.  Optical sensors , 2005, 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research.

[3]  Ryan Babbush,et al.  What is the Computational Value of Finite Range Tunneling , 2015, 1512.02206.

[4]  D. Koelle,et al.  Compact High- T c Superconducting Terahertz emitter operating up to 86 K , 2018 .

[5]  M. Manheimer,et al.  Cryogenic Computing Complexity Program: Phase 1 Introduction , 2015, IEEE Transactions on Applied Superconductivity.

[6]  Naoki Takeuchi,et al.  Multi-excitation adiabatic quantum-flux-parametron , 2017 .

[7]  D. Oates Microwave Resonators and Filters , 2015 .

[8]  O A Mukhanov,et al.  Design and Experimental Evaluation of SQIF Arrays With Linear Voltage Response , 2011, IEEE Transactions on Applied Superconductivity.

[9]  J. Matisoo,et al.  The tunneling cryotron—A superconductive logic element based on electron tunneling , 1967 .

[10]  J. Clarke,et al.  Microstrip superconducting quantum interference device amplifier: Operation in higher-order modes , 2017 .

[11]  Konstantin K. Likharev,et al.  Resistive Single Flux Quantum Logic for the Josephson- Junction Digital Technology , 2011 .

[12]  S. Kolesov,et al.  Design of Lumped-Element 2D RF Devices , 2001 .

[13]  Sergey Cherednichenko,et al.  Hot-electron bolometer terahertz mixers for the Herschel Space Observatory. , 2008, The Review of scientific instruments.

[14]  R. Barends,et al.  Reverse Isolation and Backaction of the SLUG Microwave Amplifier , 2017, 1705.01687.

[15]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[16]  Samuel P. Benz,et al.  Josephson Arbitrary Waveform Synthesis With Multilevel Pulse Biasing , 2017, IEEE Transactions on Applied Superconductivity.

[17]  S. P. Benz,et al.  1 V and 10 V SNS Programmable Voltage Standards for 70 GHz , 2009, IEEE Transactions on Applied Superconductivity.

[18]  J. Talvacchio,et al.  Detection of Far-Field Radio-Frequency Signals by Niobium Superconducting Quantum Interference Device Arrays , 2015, IEEE Transactions on Applied Superconductivity.

[19]  Sergey V. Shitov,et al.  Integrated superconducting receivers , 2000 .

[21]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[22]  Keiji Enpuku,et al.  SQUIDs in biomagnetism: a roadmap towards improved healthcare , 2016 .

[23]  John M. Martinis,et al.  High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier , 2013, 1312.7579.

[24]  L. Molenkamp,et al.  4π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions , 2015, Nature Communications.

[25]  V. V. Ryazanov,et al.  Magnetic Josephson Junctions With Superconducting Interlayer for Cryogenic Memory , 2013, IEEE Transactions on Applied Superconductivity.

[26]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[27]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[28]  A. Hale Electromagnetic Shielding , 1973 .

[29]  W. Kwok,et al.  Powerful terahertz emission from Bi2Sr2CaCu2O8+δ mesa arrays , 2013, 1305.3964.

[30]  Jia-Sheng Hong,et al.  Microstrip filters for RF/microwave applications , 2001 .

[31]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[32]  Zhen Wang,et al.  Self-planarizing process for the fabrication of Bi2Sr2CaCu2Ox stacks , 2005 .

[33]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[34]  Xiaofan Meng,et al.  64-kb Hybrid Josephson-CMOS 4 Kelvin RAM With 400 ps Access Time and 12 mW Read Power , 2013, IEEE Transactions on Applied Superconductivity.

[35]  A. Cleland,et al.  Quantum Mechanics of a Macroscopic Variable: The Phase Difference of a Josephson Junction , 1988, Science.

[36]  Takashi Yamamoto,et al.  Quantum Information Networks with Superconducting Nanowire Single-Photon Detectors , 2016 .

[37]  D. S. Holmes,et al.  Energy-Efficient Superconducting Computing—Power Budgets and Requirements , 2013, IEEE Transactions on Applied Superconductivity.

[38]  I. Siddiqi Superconducting qubits: poised for computing? , 2011 .

[39]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[40]  B. Baek,et al.  Co-Sputtered Amorphous Nb$_{ x}$ Si$_{1 - { x}}$ Barriers for Josephson-Junction Circuits , 2006, IEEE Transactions on Applied Superconductivity.

[41]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[42]  J. Oppenlaender,et al.  Nonperiodic flux to voltage conversion of series arrays of dc superconducting quantum interference devices , 2001 .

[43]  Alain Rüfenacht,et al.  Impact of the latest generation of Josephson voltage standards in ac and dc electric metrology , 2018, Metrologia.

[44]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[45]  D. Clare,et al.  Basal foot MTOC organizes pillar MTs required for coordination of beating cilia , 2014, Nature Communications.

[46]  George M. Seidel,et al.  Metallic Magnetic Calorimeters , 2005 .

[47]  Bethany M. Niedzielski,et al.  Controllable 0–π Josephson junctions containing a ferromagnetic spin valve , 2016 .

[48]  O. Mukhanov,et al.  Superconductor Digital Electronics , 2015 .

[49]  Burm Baek,et al.  Hybrid superconducting-magnetic memory device using competing order parameters. , 2013, Nature communications.

[50]  Vladimir Dotsenko,et al.  Invited Paper Special Section on Recent Progress in Superconductive Digital Electronics Superconductor Digital-rf Receiver Systems , 2022 .

[51]  Eric C. Gingrich,et al.  S/F/S Josephson junctions with single-domain ferromagnets for memory applications , 2015 .

[52]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[53]  A. Nogami,et al.  Routine clinical heart examinations using SQUID magnetocardiography at University of Tsukuba Hospital , 2017 .

[54]  R. Kleiner,et al.  Superconducting emitters of THz radiation , 2013, Nature Photonics.

[55]  T. Yamashita,et al.  Stacks of intrinsic Josephson junctions singled out from inside Bi2Sr2CaCu2O8+x single crystals , 2001 .

[56]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[57]  F. Wellstood,et al.  Measurements of Magnetism and Magnetic Properties of Matter , 2006 .

[58]  Joel N. Ullom,et al.  Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy , 2015 .

[59]  F. Piquemal,et al.  SQUIDs for Standards and Metrology , 2006 .

[60]  Samuel P. Benz,et al.  2 Volt pulse-driven josephson arbitrary waveform synthesizer , 2016, 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016).

[61]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[62]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[63]  Jr.,et al.  Spin-triplet supercurrent in Josephson junctions containing a synthetic antiferromagnet with perpendicular magnetic anisotropy , 2017, 1710.07247.

[64]  S. Tahara,et al.  High-frequency clock operation of Josephson 256-word/spl times/16-bit RAMs , 1999, IEEE Transactions on Applied Superconductivity.

[65]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[66]  Robert C. Hansen,et al.  Small Antenna Handbook: Hansen/Small Antenna , 2011 .

[67]  G.F.M. Wiegerinck,et al.  Low-power cryocooler survey , 2002 .

[68]  A. Yurgens,et al.  Intrinsic Josephson junctions: recent developments , 2000 .

[69]  Samuel P. Benz,et al.  A pulse‐driven programmable Josephson voltage standard , 1996 .

[70]  S. Stuiber Creation of ultra-low remanent fields and homogeneous NMR fields for precision experiments , 2018 .

[71]  R. Barends,et al.  Design and characterization of a lumped element single-ended superconducting microwave parametric amplifier with on-chip flux bias line , 2013, 1308.1376.

[72]  Abdur Rehman Jalil,et al.  Boosting Transparency in Topological Josephson Junctions via Stencil Lithography , 2017, 1711.01665.

[73]  D. Buck,et al.  The Cryotron-A Superconductive Computer Component , 1956, Proceedings of the IRE.

[74]  Ray Radebaugh,et al.  Cryocoolers: the state of the art and recent developments , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[75]  Roman Sobolewski,et al.  Picosecond hot-electron energy relaxation in NbN superconducting photodetectors , 2000 .

[76]  R. Leoni,et al.  An absolute magnetometer based on dc Superconducting QUantum Interference Devices , 1997 .

[77]  Tsuneji Rikitake Magnetic and electromagnetic shielding , 1987 .

[78]  R. McDermott,et al.  Superconducting low-inductance undulatory galvanometer microwave amplifier , 2011, 1109.5209.

[79]  H. Leduc,et al.  A wideband, low-noise superconducting amplifier with high dynamic range , 2012, Nature Physics.

[80]  M. Weides,et al.  Memory cell based on a $\varphi$ Josephson junction , 2013, 1306.1683.

[81]  Saburo Tanaka,et al.  SQUIDs in Nondestructive Evaluation , 2015 .

[82]  Roman Sobolewski,et al.  TOPICAL REVIEW: Hot-electron effect in superconductors and its applications for radiation sensors , 2002 .

[83]  Robert McDermott,et al.  Radio-frequency amplifiers based on dc SQUIDs , 2010 .

[84]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[85]  Arno de Lange,et al.  Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder , 2010 .

[86]  I. Siddiqi,et al.  Optimization of infrared and magnetic shielding of superconducting TiN and Al coplanar microwave resonators , 2016, 1608.06273.

[87]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[88]  Anna Y. Herr,et al.  Ultra-low-power superconductor logic , 2011, 1103.4269.

[89]  C. Hamilton Josephson voltage standards , 2000 .

[90]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[91]  N. Flowers-Jacobs,et al.  Josephson Arbitrary Waveform Synthesizer With Two Layers of Wilkinson Dividers and an FIR Filter , 2016, IEEE Transactions on Applied Superconductivity.

[92]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[93]  R. Hansen Electrically Small, Superdirective, and Superconducting Antennas: Hansen/Electrically Small, Superdirective, and Superconducting Antennas , 2006 .

[94]  Paolo Lugli,et al.  Science and Engineering Beyond Moore's Law , 2012, Proceedings of the IEEE.

[95]  D. R. Ladner,et al.  Performance and Mass vs. Operating Temperature for Pulse Tube and Stirling Cryocoolers , 2008 .

[96]  K. Irwin An application of electrothermal feedback for high resolution cryogenic particle detection , 1995 .

[97]  M. Freedman,et al.  Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes , 2016, 1610.05289.

[98]  Xiaoping Zhou,et al.  Compact Superconducting Terahertz Source Operating in Liquid Nitrogen , 2015 .

[99]  W. Hamilton Superconducting shielding , 2016 .

[100]  Nano Superconducting Quantum Interference device: a powerful tool for nanoscale investigations , 2015, 1505.06887.

[101]  S. R. Kim,et al.  Application of metallic magnetic calorimeter in rare event search , 2017 .

[102]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[103]  Y. Wada,et al.  Quantum flux parametron: a single quantum flux device for Josephson supercomputer , 1991, IEEE Transactions on Applied Superconductivity.

[104]  Naoki Takeuchi,et al.  An adiabatic quantum flux parametron as an ultra-low-power logic device , 2013 .

[105]  T. Van Duzer,et al.  Principles of Superconductive Devices and Circuits , 1981 .

[106]  J. A. Logan,et al.  Quantized Majorana conductance , 2017, Nature.

[107]  Mikio Iizuka,et al.  Emission of continuous coherent terahertz waves with tunable frequency by intrinsic Josephson junctions , 2005 .

[108]  P. Mauskopf,et al.  Advances in Bolometer Technology for Fundamental Physics , 2017 .

[109]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.