Bulk-quantity synthesis and electrical properties of SnO2 nanowires prepared by pulsed delivery

[1]  I. Hill,et al.  Combinatorial study of zinc tin oxide thin-film transistors , 2008 .

[2]  Jim P. Zheng,et al.  Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors , 2006 .

[3]  C. Shek,et al.  Insights into microstructural evolution from nanocrystalline SnO{sub 2} thin films prepared by pulsed laser deposition , 2004 .

[4]  Chao Li,et al.  Laser Ablation Synthesis and Electron Transport Studies of Tin Oxide Nanowires , 2003 .

[5]  Ling-Dong Sun,et al.  Low‐Temperature Fabrication of Highly Crystalline SnO2 Nanorods , 2003 .

[6]  C. Shek,et al.  Synthesis and structural characterization of rutile SnO_2 nanocrystals , 2003 .

[7]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[8]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[9]  S. Katircioğlu Economic Impact of Higher Education Sector on Economic Growth of North Cyprus: Evidence from Co-integration Analysis , 2002 .

[10]  James L. Gole,et al.  Tin Oxide Nanowires, Nanoribbons, and Nanotubes , 2002 .

[11]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[12]  Zhong Lin Wang,et al.  Ultra-long single crystalline nanoribbons of tin oxide , 2001 .

[13]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[14]  Shui-Tong Lee,et al.  Temperature Dependence of Si Nanowire Morphology , 2001 .

[15]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[16]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[17]  Elson Longo,et al.  A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications , 2000 .

[18]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[19]  Iijima,et al.  Heterostructures of single-walled carbon nanotubes and carbide nanorods , 1999, Science.

[20]  Iijima,et al.  Coaxial nanocable: silicon carbide and silicon oxide sheathed with boron nitride and carbon , 1998, Science.

[21]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[22]  M. Esashi,et al.  Si nanowire growth with ultrahigh vacuum scanning tunneling microscopy , 1997 .

[23]  S. Stupp,et al.  Semiconducting superlattices templated by molecular assemblies , 1996, Nature.

[24]  U. Weimar,et al.  Dislocations in nanocrystalline SnO2 thin films , 1996 .

[25]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[26]  Roger Fabian W. Pease,et al.  Oxidation of sub-50 nm Si columns for light emission study , 1992 .

[27]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[28]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[29]  D. Tollenaar,et al.  The structure of paper , 1951 .

[30]  F. C. Frank,et al.  The influence of dislocations on crystal growth , 1949 .