Maximum scattered 픽q-linear sets of PG(1, q4)

Abstract There are two known families of maximum scattered F q -linear sets in PG ( 1 , q t ) : the linear sets of pseudoregulus type and for t ≥ 4 the scattered linear sets found by Lunardon and Polverino. For t = 4 we show that these are the only maximum scattered F q -linear sets and we describe the orbits of these linear sets under the groups PGL ( 2 , q 4 ) and PΓL ( 2 , q 4 ) .

[1]  Giuseppe Marino,et al.  Maximum scattered linear sets and MRD-codes , 2017, 1701.06831.

[2]  Bence Csajbók,et al.  On the equivalence of linear sets , 2015, Des. Codes Cryptogr..

[3]  G. Voorde Desarguesian spreads and field reduction for elements of the semilinear group , 2016, 1607.01549.

[4]  Bence Csajbók On Bisecants of Rédei Type Blocking Sets and Applications , 2018, Comb..

[5]  Simeon Ball The number of directions determined by a function over a finite field , 2003, J. Comb. Theory, Ser. A.

[6]  Guglielmo Lunardon,et al.  Blocking Sets and Derivable Partial Spreads , 2001 .

[7]  Aart Blokhuis,et al.  On the Number of Slopes of the Graph of a Function Defined on a Finite Field , 1999, J. Comb. Theory, Ser. A.

[8]  John Sheekey,et al.  On embeddings of minimum dimension of PG(n,q)×PG(n,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PG}}(n,q , 2013, Designs, Codes and Cryptography.

[9]  Olga Polverino,et al.  Linear sets in finite projective spaces , 2010, Discret. Math..

[10]  Bence Csajbók,et al.  On scattered linear sets of pseudoregulus type in PG(1, qt) , 2016, Finite Fields Their Appl..

[11]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[13]  Olga Polverino,et al.  Fq-linear blocking sets in PG(2,q4) , 2005 .

[14]  Guglielmo Lunardon,et al.  Translation ovoids of orthogonal polar spaces , 2004 .

[15]  Maarten De Boeck,et al.  A linear set view on KM-arcs , 2015, 1512.04818.

[16]  Michel Lavrauw,et al.  Subgeometries and linear sets on a projective line , 2014, Finite Fields Their Appl..

[17]  John Bamberg,et al.  FinInG: a package for Finite Incidence Geometry , 2016, 1606.05530.