Comprehensive High‐Throughput Arrays for Relative Methylation (CHARM)

DNA methylation (DNAm) is a term used to describe the heritable covalent addition of a methyl group to cytosines at CpG dinucleotides in mammals. While methods for examining DNAm status at specific loci have existed for several years, recent technological advances have begun to enable the examination of DNAm across the genome. In this unit, we describe comprehensive high‐throughput arrays for relative methylation (CHARM), a highly sensitive and specific approach to measure DNA methylation across the genome. This method makes no assumptions about where functionally important DNAm occurs, i.e., CpG island or promoter regions, and includes lower‐CpG‐density regions of the genome. In addition, it uses a novel genome‐weighted smoothing algorithm to correct for CpG density and fragment biases present in methyl‐enrichment or methyl‐depletion DNA‐fractionation methods. It can be applied to studying epigenomic changes in DNAm for normal and diseased samples. Curr. Protoc. Hum. Genet. 65:20.0.1‐20.0.19. © 2010 by John Wiley & Sons, Inc.

[1]  Vincent Colot,et al.  Profiling DNA methylation patterns using genomic tiling microarrays , 2005, Nature Methods.

[2]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[3]  W. Lam,et al.  Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells , 2005, Nature Genetics.

[4]  Arthur Greenberg,et al.  An Emerging Science , 2006 .

[5]  G. Churchill,et al.  Experimental design for gene expression microarrays. , 2001, Biostatistics.

[6]  Antony V. Cox,et al.  DNA Methylation Profiling of the Human Major Histocompatibility Complex: A Pilot Study for the Human Epigenome Project , 2004, PLoS biology.

[7]  E. Raleigh,et al.  McrBC: a multisubunit GTP-dependent restriction endonuclease. , 1992, Journal of molecular biology.

[8]  A. Feinberg,et al.  The history of cancer epigenetics , 2004, Nature Reviews Cancer.

[9]  Rameen Beroukhim,et al.  Molecular characterization of the tumor microenvironment in breast cancer. , 2004, Cancer cell.

[10]  W Miller,et al.  Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain. , 2000, Genome research.

[11]  A. Feinberg,et al.  Detailed DNA methylation profiles of the E-cadherin promoter in the NCI-60 cancer cells , 2007, Molecular Cancer Therapeutics.

[12]  T. Richmond,et al.  Analysis of chromosome breakpoints in neuroblastoma at sub‐kilobase resolution using fine‐tiling oligonucleotide array CGH , 2005, Genes, chromosomes & cancer.

[13]  A. Feinberg,et al.  Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores , 2008, Nature Genetics.

[14]  M. Esteller Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. , 2007, British journal of cancer.

[15]  Wei Jiang,et al.  High-throughput DNA methylation profiling using universal bead arrays. , 2006, Genome research.

[16]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[17]  Vladimir Makarov,et al.  Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. , 2004, Genome research.

[18]  Kenny Q. Ye,et al.  Comparative isoschizomer profiling of cytosine methylation: the HELP assay. , 2006, Genome research.

[19]  Jonathan Pevsner,et al.  DNA methylation signatures within the human brain. , 2007, American journal of human genetics.

[20]  H. Zoghbi,et al.  Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 , 1999, Nature Genetics.

[21]  A. Feinberg,et al.  The emerging science of epigenomics. , 2006, Human molecular genetics.

[22]  C. Chae,et al.  DNA hypomethylation and germ cell-specific expression of testis-specific H2B histone gene. , 1991, The Journal of biological chemistry.

[23]  Wolfgang Härdle,et al.  Optimal Median Smoothing , 1995 .

[24]  J. Rogers,et al.  DNA methylation profiling of human chromosomes 6, 20 and 22 , 2006, Nature Genetics.

[25]  L. Shaffer,et al.  Allele-specific methylation of a functional CTCF binding site upstream of MEG3 in the human imprinted domain of 14q32 , 2005, Chromosome Research.

[26]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[27]  Sun-Chong Wang,et al.  Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. , 2008, American journal of human genetics.

[28]  P. Laird,et al.  COBRA: a sensitive and quantitative DNA methylation assay. , 1997, Nucleic acids research.

[29]  Rafael A. Irizarry,et al.  Stochastic models inspired by hybridization theory for short oligonucleotide arrays , 2004, J. Comput. Biol..

[30]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[31]  Bert Vogelstein,et al.  DNMT1 and DNMT3b cooperate to silence genes in human cancer cells , 2002, Nature.

[32]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[33]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[34]  Rafael A. Irizarry,et al.  Comparison of Affymetrix GeneChip expression measures , 2006, Bioinform..

[35]  R. W. Davis,et al.  An automated hydrodynamic process for controlled, unbiased DNA shearing. , 1998, Genome research.

[36]  Michael Black,et al.  Role of transposable elements in heterochromatin and epigenetic control , 2004, Nature.

[37]  Peter A. Jones,et al.  The Epigenomics of Cancer , 2007, Cell.

[38]  Vincent Colot,et al.  Epigenomic mapping in Arabidopsis using tiling microarrays , 2005, Chromosome Research.

[39]  H. Grabsch,et al.  High resolution analysis of DNA copy-number aberrations of chromosomes 8, 13, and 20 in gastric cancers , 2009, Virchows Archiv.

[40]  Rafael A Irizarry,et al.  Comprehensive high-throughput arrays for relative methylation (CHARM). , 2008, Genome research.

[41]  Huidong Shi,et al.  Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. , 2002, Genome research.

[42]  J. McPherson,et al.  Comprehensive DNA methylation profiling in a human cancer genome identifies novel epigenetic targets. , 2006, Carcinogenesis.

[43]  A. Bird,et al.  Non‐methylated CpG‐rich islands at the human alpha‐globin locus: implications for evolution of the alpha‐globin pseudogene. , 1987, The EMBO journal.

[44]  Jacqueline A. Hall,et al.  Identification of Novel High-Frequency DNA Methylation Changes in Breast Cancer , 2007, PloS one.

[45]  R. W. Davis,et al.  Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. , 1996, Nucleic Acids Research.

[46]  Andrew P. Feinberg,et al.  Genome-scale approaches to the epigenetics of common human disease , 2009, Virchows Archiv.

[47]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[48]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[49]  I. Gut,et al.  De novo quantitative bisulfite sequencing using the pyrosequencing technology. , 2004, Analytical biochemistry.

[50]  P. Laird,et al.  MethyLight: a high-throughput assay to measure DNA methylation. , 2000, Nucleic acids research.

[51]  N. Carter,et al.  Chromosome paints from single copies of chromosomes , 2004, Chromosome Research.

[52]  M. Ehrlich,et al.  Histone modification in constitutive heterochromatin versus unexpressed euchromatin in human cells , 2004, Journal of cellular biochemistry.