Optimization Strategies for the Floating-point Gcd

We describe algorithms for computing the greatest common divisor (GCD) of two univariate polynomials with inexactly-known coeecients. Assuming that an estimate for the GCD degree is available (e.g., using an SVD-based algorithm), we formulate and solve a nonlinear optimization problem in order to determine the coeecients of the \best" GCD. We discuss various issues related to the implementation of the algorithms and present some preliminary test results.

[1]  W. S. Brown On Euclid's algorithm and the computation of polynomial greatest common divisors , 1971, SYMSAC '71.

[2]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[3]  I. Emiris,et al.  Certified approximate univariate GCDs , 1997 .

[4]  Narendra Karmarkar,et al.  Approximate polynomial greatest common divisors and nearest singular polynomials , 1996, ISSAC '96.

[5]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[6]  N. Karcanias,et al.  A matrix pencil based numerical method for the computation of the GCD of polynomials , 1994, IEEE Trans. Autom. Control..

[7]  André Galligo,et al.  Numerical Univariate Polynomial GCD , 1996 .

[8]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[9]  Matu-Tarow Noda,et al.  Approximate GCD and its application to ill-conditioned algebraic equations , 1991 .

[10]  Hans J. Stetter,et al.  Detection and Validation of Clusters of Polynomial Zeros , 1997, J. Symb. Comput..

[11]  Stephen M. Watt,et al.  The singular value decomposition for polynomial systems , 1995, ISSAC '95.

[12]  Robert M. Corless Editor's Corner: Cofactor Iteration , 1996 .

[13]  Chenyi Hu,et al.  Rigorous Global Search - Executive Summary , 1997 .

[14]  V. Pan Numerical Computation of a Polynomial GCD and Extensions , 1996 .

[15]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[16]  Arnold Schönhage,et al.  Quasi-GCD computations , 1985, J. Complex..

[17]  Thomas W. Sederberg,et al.  Best linear common divisors for approximate degree reduction , 1993, Comput. Aided Des..