Multi-scale Clustering of Frame-to-Frame Correspondences for Motion Segmentation

We present an approach for motion segmentation using independently detected keypoints instead of commonly used tracklets or trajectories. This allows us to establish correspondences over non- consecutive frames, thus we are able to handle multiple object occlusions consistently. On a frame-to-frame level, we extend the classical split-and-merge algorithm for fast and precise motion segmentation. Globally, we cluster multiple of these segmentations of different time scales with an accurate estimation of the number of motions. On the standard benchmarks, our approach performs best in comparison to all algorithms which are able to handle unconstrained missing data. We further show that it works on benchmark data with more than 98% of the input data missing. Finally, the performance is evaluated on a mobile-phone-recorded sequence with multiple objects occluded at the same time.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Tat-Jun Chin,et al.  Multi-structure model selection via kernel optimisation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[4]  Tat-Jun Chin,et al.  The Ordered Residual Kernel for Robust Motion Subspace Clustering , 2009, NIPS.

[5]  R. Vidal,et al.  Motion segmentation with missing data using PowerFactorization and GPCA , 2004, CVPR 2004.

[6]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[7]  David F. Fouhey,et al.  Multiple Plane Detection in Image Pairs Using J-Linkage , 2010, 2010 20th International Conference on Pattern Recognition.

[8]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[9]  Rangachar Kasturi,et al.  Machine vision , 1995 .

[10]  Patrick Pérez,et al.  Clustering Point Trajectories with Various Life-Spans , 2009, 2009 Conference for Visual Media Production.

[11]  René Vidal,et al.  Motion Segmentation in the Presence of Outlying, Incomplete, or Corrupted Trajectories , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Ivan Laptev,et al.  Track to the future: Spatio-temporal video segmentation with long-range motion cues , 2011, CVPR 2011.

[13]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[14]  Tat-Jun Chin,et al.  A global optimization approach to robust multi-model fitting , 2011, CVPR 2011.

[15]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[16]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, International Journal of Computer Vision.

[17]  Thomas Brox,et al.  Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions , 2011, 2011 International Conference on Computer Vision.

[18]  Changchang Wu,et al.  SiftGPU : A GPU Implementation of Scale Invariant Feature Transform (SIFT) , 2007 .

[19]  Anil M. Cheriyadat,et al.  Non-negative matrix factorization of partial track data for motion segmentation , 2010, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Frédéric Jurie,et al.  Motion Models that Only Work Sometimes , 2012, BMVC.

[21]  Roberto Tron RenVidal A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007 .

[22]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[23]  Andrea Fusiello,et al.  Robust Multiple Structures Estimation with J-Linkage , 2008, ECCV.

[24]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[25]  Seth J. Teller,et al.  Particle Video: Long-Range Motion Estimation Using Point Trajectories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[26]  Guangliang Chen,et al.  Motion segmentation by SCC on the hopkins 155 database , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[27]  Takeo Kanade,et al.  Background Subtraction for Freely Moving Cameras , 2009, 2009 IEEE 12th International Conference on Computer Vision.