Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-Scale Structure

We derive analytical formulae for the Minkowski functionals of the cosmic microwave background (CMB) and large-scale structure (LSS) from primordial non-Gaussianity. These formulae enable us to estimate a nonlinear coupling parameter, fNL, directly from the CMB and LSS data without relying on numerical simulations of non-Gaussian primordial fluctuations. One can use these formulae to estimate statistical errors on fNL from Gaussian realizations, which are much faster to generate than non-Gaussian ones, fully taking into account the cosmic/sampling variance, beam smearing, survey mask, etc. We show that the CMB data from the Wilkinson Microwave Anisotropy Probe should be sensitive to |fNL| ≃ 40 at the 68% confidence level. The Planck data should be sensitive to |fNL| ≃ 20. As for the LSS data, the late-time non-Gaussianity arising from gravitational instability and galaxy biasing makes it more challenging to detect primordial non-Gaussianity at low redshifts. The late-time effects obscure the primordial signals at small spatial scales. High-redshift galaxy surveys at z > 2 covering ~10 Gpc3 volume would be required for the LSS data to detect |fNL| ≃ 100. Minkowski functionals are nicely complementary to the bispectrum because the Minkowski functionals are defined in real space and the bispectrum is defined in Fourier space. This property makes the Minkowski functionals a useful tool in the presence of real-world issues such as anisotropic noise, foreground, and survey masks. Our formalism can be easily extended to scale-dependent fNL.

[1]  J. Dunkley,et al.  Constraining Isocurvature Initial Conditions with WMAP 3-year data , 2006, astro-ph/0606685.

[2]  Claudia de Rham,et al.  Mimicking Λ with a spin-two ghost condensate , 2006, hep-th/0605122.

[3]  Eiichiro Komatsu,et al.  Angular trispectrum of CMB temperature anisotropy from primordial non-Gaussianity with the full radiation transfer function , 2006, astro-ph/0602099.

[4]  F. Hansen,et al.  Testing primordial non-Gaussianity in CMB anisotropies , 2005, astro-ph/0509098.

[5]  M. Tegmark,et al.  Limits on non-Gaussianities from WMAP data , 2005, astro-ph/0509029.

[6]  A. Mazumdar,et al.  Seed perturbations for primordial magnetic fields from minimally supersymmetric standard model flat directions , 2004 .

[7]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[8]  M. Zaldarriaga,et al.  Primordial bispectrum information from CMB polarization , 2004, astro-ph/0408455.

[9]  R. Nichol,et al.  Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.

[10]  E. Komatsu,et al.  Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.

[11]  M. Zaldarriaga,et al.  The shape of non-Gaussianities , 2004, astro-ph/0405356.

[12]  E. Silverstein,et al.  DBI in the sky , 2004, hep-th/0404084.

[13]  C. Skordis,et al.  Initial conditions of the universe: how much isocurvature is allowed? , 2004, Physical review letters.

[14]  M. Zaldarriaga,et al.  Probing primordial non-Gaussianity with large - scale structure , 2003, astro-ph/0312286.

[15]  M. Zaldarriaga,et al.  Ghost Inflation , 2003, hep-th/0312100.

[16]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[17]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[18]  T. Piran,et al.  Implications of spacetime quantization for the Bahcall–Waxman neutrino bound , 2003, hep-ph/0307027.

[19]  M. Zaldarriaga,et al.  Cosmological Perturbations From Inhomogeneous Reheating, Freeze-Out, and Mass Domination , 2003, astro-ph/0305548.

[20]  David N. Spergel,et al.  Measuring Primordial Non-Gaussianity in the Cosmic Microwave Background , 2003, astro-ph/0305189.

[21]  J. Gott,et al.  Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets , 2003, astro-ph/0304455.

[22]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .

[23]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.

[24]  M. Halpern,et al.  SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .

[25]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[26]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[27]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[28]  Carlo Ungarelli,et al.  The primordial density perturbation in the curvaton scenario , 2022 .

[29]  Wayne Hu,et al.  The Angular Trispectra of CMB Temperature and Polarization , 2002, astro-ph/0206155.

[30]  L. Verde,et al.  Dark energy and cosmic microwave background bispectrum , 2001, astro-ph/0108179.

[31]  David N. Spergel,et al.  Measurement of the Cosmic Microwave Background Bispectrum on the COBE DMR Sky Maps , 2001, astro-ph/0107605.

[32]  T. Matsubara Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory , 2000, astro-ph/0006269.

[33]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[34]  A. Cooray,et al.  Imprint of Reionization on the Cosmic Microwave Background Bispectrum , 1999, astro-ph/9910397.

[35]  L. Verde,et al.  Large scale structure, the cosmic microwave background, and primordial non-gaussianity , 1999, astro-ph/9906301.

[36]  D. Spergel,et al.  The Microwave Background Bispectrum, Paper I: Basic Formalism , 1998, astro-ph/9811252.

[37]  D. Spergel,et al.  Microwave background bispectrum. II. A probe of the low redshift universe , 1998, astro-ph/9811251.

[38]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[39]  K. Gorski,et al.  Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1997, astro-ph/9710185.

[40]  A. Kosowsky,et al.  Minkowski functional description of microwave background Gaussianity , 1997, astro-ph/9710164.

[41]  T. Buchert,et al.  Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure , 1997, astro-ph/9702130.

[42]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[43]  T. Matsubara Diagrammatic Methods in Statistics and Biasing in the Large-scale Structure of the Universe , 1995, astro-ph/9501056.

[44]  T. Matsubara Analytic Expression of the Genus in a Weakly Non-Gaussian Field Induced by Gravity , 1994, astro-ph/9405037.

[45]  F. Bernardeau Skewness and Kurtosis in Large-Scale Cosmic Fields , 1993, astro-ph/9312026.

[46]  E. Gaztañaga,et al.  Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.

[47]  J. Gott,et al.  The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .

[48]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[49]  M. W. Crofton,et al.  VII. On the theory of local probability, applied to straight lines drawn at random in a plane; the methods used being also extended to the proof of certain new theorems in the integral calculus , 1868, Philosophical Transactions of the Royal Society of London.