Primordial Non-Gaussianity and Analytical Formula for Minkowski Functionals of the Cosmic Microwave Background and Large-Scale Structure
暂无分享,去创建一个
[1] J. Dunkley,et al. Constraining Isocurvature Initial Conditions with WMAP 3-year data , 2006, astro-ph/0606685.
[2] Claudia de Rham,et al. Mimicking Λ with a spin-two ghost condensate , 2006, hep-th/0605122.
[3] Eiichiro Komatsu,et al. Angular trispectrum of CMB temperature anisotropy from primordial non-Gaussianity with the full radiation transfer function , 2006, astro-ph/0602099.
[4] F. Hansen,et al. Testing primordial non-Gaussianity in CMB anisotropies , 2005, astro-ph/0509098.
[5] M. Tegmark,et al. Limits on non-Gaussianities from WMAP data , 2005, astro-ph/0509029.
[6] A. Mazumdar,et al. Seed perturbations for primordial magnetic fields from minimally supersymmetric standard model flat directions , 2004 .
[7] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[8] M. Zaldarriaga,et al. Primordial bispectrum information from CMB polarization , 2004, astro-ph/0408455.
[9] R. Nichol,et al. Cosmological parameter analysis including SDSS Lyα forest and galaxy bias: Constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy , 2004, astro-ph/0407372.
[10] E. Komatsu,et al. Non-Gaussianity from inflation: theory and observations , 2004, Physics Reports.
[11] M. Zaldarriaga,et al. The shape of non-Gaussianities , 2004, astro-ph/0405356.
[12] E. Silverstein,et al. DBI in the sky , 2004, hep-th/0404084.
[13] C. Skordis,et al. Initial conditions of the universe: how much isocurvature is allowed? , 2004, Physical review letters.
[14] M. Zaldarriaga,et al. Probing primordial non-Gaussianity with large - scale structure , 2003, astro-ph/0312286.
[15] M. Zaldarriaga,et al. Ghost Inflation , 2003, hep-th/0312100.
[16] R. Nichol,et al. Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.
[17] M. Halpern,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .
[18] T. Piran,et al. Implications of spacetime quantization for the Bahcall–Waxman neutrino bound , 2003, hep-ph/0307027.
[19] M. Zaldarriaga,et al. Cosmological Perturbations From Inhomogeneous Reheating, Freeze-Out, and Mass Domination , 2003, astro-ph/0305548.
[20] David N. Spergel,et al. Measuring Primordial Non-Gaussianity in the Cosmic Microwave Background , 2003, astro-ph/0305189.
[21] J. Gott,et al. Minkowski Functionals of SDSS Galaxies I : Analysis of Excursion Sets , 2003, astro-ph/0304455.
[22] M. Halpern,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Tests of Gaussianity , 2003 .
[23] M. Halpern,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles and Window Functions , 2003, astro-ph/0302214.
[24] M. Halpern,et al. SUBMITTED TO The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/12/01 FIRST YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: INTERPRETATION OF THE TT AND TE ANGULAR POWER SPECTRUM PEAKS , 2022 .
[25] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.
[26] Edward J. Wollack,et al. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.
[27] Edward J. Wollack,et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.
[28] Carlo Ungarelli,et al. The primordial density perturbation in the curvaton scenario , 2022 .
[29] Wayne Hu,et al. The Angular Trispectra of CMB Temperature and Polarization , 2002, astro-ph/0206155.
[30] L. Verde,et al. Dark energy and cosmic microwave background bispectrum , 2001, astro-ph/0108179.
[31] David N. Spergel,et al. Measurement of the Cosmic Microwave Background Bispectrum on the COBE DMR Sky Maps , 2001, astro-ph/0107605.
[32] T. Matsubara. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory , 2000, astro-ph/0006269.
[33] David N. Spergel,et al. Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.
[34] A. Cooray,et al. Imprint of Reionization on the Cosmic Microwave Background Bispectrum , 1999, astro-ph/9910397.
[35] L. Verde,et al. Large scale structure, the cosmic microwave background, and primordial non-gaussianity , 1999, astro-ph/9906301.
[36] D. Spergel,et al. The Microwave Background Bispectrum, Paper I: Basic Formalism , 1998, astro-ph/9811252.
[37] D. Spergel,et al. Microwave background bispectrum. II. A probe of the low redshift universe , 1998, astro-ph/9811251.
[38] Wayne Hu,et al. Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.
[39] K. Gorski,et al. Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps , 1997, astro-ph/9710185.
[40] A. Kosowsky,et al. Minkowski functional description of microwave background Gaussianity , 1997, astro-ph/9710164.
[41] T. Buchert,et al. Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure , 1997, astro-ph/9702130.
[42] U. Seljak,et al. A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.
[43] T. Matsubara. Diagrammatic Methods in Statistics and Biasing in the Large-scale Structure of the Universe , 1995, astro-ph/9501056.
[44] T. Matsubara. Analytic Expression of the Genus in a Weakly Non-Gaussian Field Induced by Gravity , 1994, astro-ph/9405037.
[45] F. Bernardeau. Skewness and Kurtosis in Large-Scale Cosmic Fields , 1993, astro-ph/9312026.
[46] E. Gaztañaga,et al. Biasing and hierarchical statistics in large-scale structure , 1993, astro-ph/9302009.
[47] J. Gott,et al. The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .
[48] J. Koenderink. The structure of images , 2004, Biological Cybernetics.
[49] M. W. Crofton,et al. VII. On the theory of local probability, applied to straight lines drawn at random in a plane; the methods used being also extended to the proof of certain new theorems in the integral calculus , 1868, Philosophical Transactions of the Royal Society of London.