Approximate Controllability for Impulsive Riemann-Liouville Fractional Differential Inclusions

We study the control systems governed by impulsive Riemann-Liouville fractional differential inclusions and their approximate controllability in Banach space. Firstly, we introduce the -mild solutions for the impulsive Riemann-Liouville fractional differential inclusions in Banach spaces. Secondly, by using the fractional power of operators and a fixed point theorem for multivalued maps, we establish sufficient conditions for the approximate controllability for a class of Riemann-Liouville fractional impulsive differential inclusions, which is a generalization and continuation of the recent results on this issue. At the end, we give an example to illustrate the application of the abstract results.

[1]  Y.-K. Chang,et al.  Controllability of mixed Volterra-Fredholm-type integro-differential inclusions in Banach spaces , 2008, J. Frankl. Inst..

[2]  Yong Zhou,et al.  Existence of mild solutions for fractional neutral evolution equations , 2010, Comput. Math. Appl..

[3]  Krzysztof Rykaczewski,et al.  Approximate controllability of differential inclusions in Hilbert spaces , 2012 .

[4]  Zhenhai Liu,et al.  Integral boundary value problems for first order integro-differential equations with impulsive integral conditions , 2011, Comput. Math. Appl..

[5]  Abdelghani Ouahab,et al.  Controllability results for functional semilinear differential inclusions in Fréchet spaces , 2005 .

[6]  Rathinasamy Sakthivel,et al.  On the approximate controllability of semilinear fractional differential systems , 2011, Comput. Math. Appl..

[7]  Zhenhai Liu,et al.  Browder-Tikhonov regularization of non-coercive evolution hemivariational inequalities , 2005 .

[8]  Haibo Chen,et al.  Some results on impulsive boundary value problem for fractional differential inclusions , 2011 .

[9]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[10]  Dumitru Baleanu,et al.  LYAPUNOV-KRASOVSKII STABILITY THEOREM FOR FRACTIONAL SYSTEMS WITH DELAY , 2011 .

[11]  Zhenhai Liu,et al.  Approximate controllability of fractional functional evolution inclusions with delay in Hilbert spaces , 2014, IMA J. Math. Control. Inf..

[12]  Xianlong Fu,et al.  Controllability of non-densely defined functional differential systems in abstract space , 2006, Appl. Math. Lett..

[13]  B. Ahmad,et al.  Boundary value problems for n-th order differential inclusions with four-point integral boundary conditions , 2012 .

[14]  Selvaraj Marshal Anthoni,et al.  Approximate controllability of nonlinear fractional dynamical systems , 2013, Commun. Nonlinear Sci. Numer. Simul..

[15]  Nazim I. Mahmudov,et al.  Controllability of semilinear stochastic systems in Hilbert spaces , 2003 .

[16]  Nikolaos S. Papageorgiou On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation , 1985 .

[17]  Michal Fečkan,et al.  On the new concept of solutions and existence results for impulsive fractional evolution equations , 2011 .

[18]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[19]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[20]  K. Deimling Multivalued Differential Equations , 1992 .

[21]  Nagarajan Sukavanam,et al.  Approximate Controllability of Fractional Order Semilinear Delay Systems , 2011, J. Optim. Theory Appl..

[22]  Sakthivel Rathinasamy,et al.  Approximate Controllability of Fractional Differential Equations with State-Dependent Delay , 2013 .

[23]  Zhenhai Liu,et al.  Existence results for quasilinear parabolic hemivariational inequalities , 2008 .

[24]  Hong Xing Zhou,et al.  Approximate Controllability for a Class of Semilinear Abstract Equations , 1983 .

[25]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[26]  Rathinasamy Sakthivel,et al.  Approximate Controllability of Fractional Integrodifferential Evolution Equations , 2013, J. Appl. Math..

[27]  Mouffak Benchohra,et al.  Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions , 2009 .

[28]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[29]  Donal O'Regan,et al.  Controllability of semilinear differential equations and inclusions via semigroup theory in banach spaces , 2005 .

[30]  Nazim I. Mahmudov,et al.  On Concepts of Controllability for Deterministic and Stochastic Systems , 1999 .

[31]  A. Myshkis Contributions to differential equations , 1966 .

[32]  Roberto Triggiani,et al.  A Note on the Lack of Exact Controllability for Mild Solutions in Banach Spaces , 1977 .

[33]  B. Ahmad,et al.  BOUNDARY VALUE PROBLEMS FOR nTH ORDER DIFFERENTIAL INCLUSIONS WITH FOUR-POINT INTEGRAL BOUNDARY CONDITIONS , 2012 .

[34]  Zhenhai Liu,et al.  A class of BVPS for first order impulsive integro-differential equations , 2011, Appl. Math. Comput..

[35]  Valeri Obukhovskii,et al.  Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces , 2011 .

[36]  William A. Wakeham,et al.  A fractional differential equation for a MEMS viscometer used in the oil industry , 2009 .

[37]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[38]  W. Szymanowski,et al.  BULLETIN DE L'ACADEMIE POLONAISE DES SCIENCES , 1953 .