Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production

[1]  C. Petit,et al.  CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV–vis irradiation , 2017 .

[2]  P. Fornasiero,et al.  Photocatalytic Hydrogen Production: A Rift into the Future Energy Supply , 2017 .

[3]  J. Durrant,et al.  Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation. , 2017, Journal of the American Chemical Society.

[4]  D. Du,et al.  Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion , 2017 .

[5]  M. Prato,et al.  Mix and match metal oxides and nanocarbons for new photocatalytic frontiers , 2016 .

[6]  J. Shapter,et al.  Recent Development of Carbon Nanotube Transparent Conductive Films. , 2016, Chemical reviews.

[7]  Alexander J. Cowan,et al.  Photochemical CO2 reduction using structurally controlled g-C3N4. , 2016, Physical chemistry chemical physics : PCCP.

[8]  P. Fornasiero,et al.  Solar and visible light photocatalytic enhancement of halloysite nanotubes/g-C3N4 heteroarchitectures , 2016 .

[9]  B. Lotsch,et al.  Soft Photocatalysis: Organic Polymers for Solar Fuel Production , 2016 .

[10]  Paolo Fornasiero,et al.  Synthesis and photocatalytic application of visible-light active β-Fe2O3/g-C3N4 hybrid nanocomposites , 2016 .

[11]  Siang-Piao Chai,et al.  Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? , 2016, Chemical reviews.

[12]  Yang Xia,et al.  Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4 , 2016 .

[13]  Kazuhiko Maeda,et al.  Nature-Inspired, Highly Durable CO2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light. , 2016, Journal of the American Chemical Society.

[14]  M. Fernández-García,et al.  Photoactivity and charge trapping sites in copper and vanadium doped anatase TiO2 nano-materials , 2016 .

[15]  M. Pumera,et al.  Electrochemistry of Layered Graphitic Carbon Nitride Synthesised from Various Precursors: Searching for Catalytic Effects. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  J. Coleman,et al.  Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet-Carbon Nanotube Composite Catalytic Electrodes. , 2016, ACS nano.

[17]  Quan-hong Yang,et al.  Holey Graphitic Carbon Nitride Nanosheets with Carbon Vacancies for Highly Improved Photocatalytic Hydrogen Production , 2015 .

[18]  Xinchen Wang,et al.  Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis. , 2015, Angewandte Chemie.

[19]  Yueping Fang,et al.  Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution. , 2015, Dalton transactions.

[20]  L. Qu,et al.  A Graphitic-C3N4 "Seaweed" Architecture for Enhanced Hydrogen Evolution. , 2015, Angewandte Chemie.

[21]  N. Keller,et al.  Single-Step Synthesis of SnS₂ Nanosheet-Decorated TiO₂ Anatase Nanofibers as Efficient Photocatalysts for the Degradation of Gas-Phase Diethylsulfide. , 2015, ACS applied materials & interfaces.

[22]  Jinshui Zhang,et al.  Sol processing of conjugated carbon nitride powders for thin-film fabrication. , 2015, Angewandte Chemie.

[23]  Xing Zhang,et al.  Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway , 2015, Science.

[24]  S. Chai,et al.  Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane. , 2015, Chemical communications.

[25]  F. Dong,et al.  Graphitic carbon nitride based nanocomposites: a review. , 2015, Nanoscale.

[26]  L. Qu,et al.  Graphitic carbon nitride nanoribbons: graphene-assisted formation and synergic function for highly efficient hydrogen evolution. , 2014, Angewandte Chemie.

[27]  Chun‐Hu Chen,et al.  Graphene thickness-controlled photocatalysis and surface enhanced Raman scattering. , 2014, Nanoscale.

[28]  Shaobin Wang,et al.  A new metal-free carbon hybrid for enhanced photocatalysis. , 2014, ACS applied materials & interfaces.

[29]  Xiaobo Chen,et al.  Titanium dioxide-based nanomaterials for photocatalytic fuel generations. , 2014, Chemical reviews.

[30]  Yong Wang,et al.  Combination of carbon nitride and carbon nanotubes: synergistic catalysts for energy conversion. , 2014, ChemSusChem.

[31]  Mietek Jaroniec,et al.  Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. , 2014, Angewandte Chemie.

[32]  Yajun Wang,et al.  Enhanced oxidation ability of g-C3N4 photocatalyst via C60 modification , 2014 .

[33]  Jiaguo Yu,et al.  g-C3N4-Based Photocatalysts for Hydrogen Generation. , 2014, The journal of physical chemistry letters.

[34]  Can Yang,et al.  Nanospherical Carbon Nitride Frameworks with Sharp Edges Accelerating Charge Collection and Separation at a Soft Photocatalytic Interface , 2014, Advanced materials.

[35]  Hui‐Ming Cheng,et al.  CdS–mesoporous ZnS core–shell particles for efficient and stable photocatalytic hydrogen evolution under visible light , 2014 .

[36]  Jun Jiang,et al.  Two-dimensional g-C(3)N(4): an ideal platform for examining facet selectivity of metal co-catalysts in photocatalysis. , 2014, Chemical communications.

[37]  Santosh Kumar,et al.  Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight , 2014 .

[38]  Jianghua Li,et al.  Origin of the enhanced visible-light photocatalytic activity of CNT modified g-C3N4 for H2 production. , 2014, Physical chemistry chemical physics : PCCP.

[39]  M. Prato,et al.  Direct observation of spin-injection in tyrosinate-functionalized single-wall carbon nanotubes , 2014 .

[40]  G. Adami,et al.  Enhanced Hydrogen Production by Photoreforming of Renewable Oxygenates Through Nanostructured Fe2O3 Polymorphs , 2014 .

[41]  A. Heeger,et al.  25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation , 2014, Advanced materials.

[42]  M. Pumera,et al.  Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. , 2013, The Analyst.

[43]  Hua-ming Li,et al.  The CNT modified white C3N4 composite photocatalyst with enhanced visible-light response photoactivity. , 2013, Dalton transactions.

[44]  P. Ajayan,et al.  Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light , 2013, Advanced materials.

[45]  Xianzhi Fu,et al.  Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. , 2012, Angewandte Chemie.

[46]  S. Ogale,et al.  Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: Electronic and morphological effects , 2012 .

[47]  Changcun Han,et al.  Synthesis of MWNTs/g-C3N4 composite photocatalysts with efficient visible light photocatalytic hydrogen evolution activity , 2012 .

[48]  Yao Zheng,et al.  Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis , 2012 .

[49]  M. Antonietti,et al.  Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. , 2012, Angewandte Chemie.

[50]  H. García,et al.  Single- and multi-walled carbon nanotubes covalently linked to perylenebisimides: synthesis, characterization and photophysical properties , 2012 .

[51]  M. Jaroniec,et al.  Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites , 2011 .

[52]  Ping Liu,et al.  Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis , 2011 .

[53]  A. Green,et al.  Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. , 2011, ACS nano.

[54]  Yuhan Sun,et al.  One‐Step Solvothermal Synthesis of a Carbon@TiO2 Dyade Structure Effectively Promoting Visible‐Light Photocatalysis , 2010, Advanced materials.

[55]  M. Antonietti,et al.  Facile one-pot synthesis of nanoporous carbon nitride solids by using soft templates. , 2010, ChemSusChem.

[56]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[57]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.

[58]  E. G. Gillan,et al.  From triazines to heptazines: deciphering the local structure of amorphous nitrogen-rich carbon nitride materials. , 2008, Journal of the American Chemical Society.

[59]  Keita Kobayashi,et al.  Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. , 2008, Nano letters.

[60]  Y. Deligiannakis,et al.  High-field 285 GHz electron paramagnetic resonance study of indigenous radicals of humic acids. , 2007, The journal of physical chemistry. A.

[61]  Anusorn Kongkanand,et al.  Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions. , 2007, ACS nano.

[62]  P. Puech,et al.  Raman bands of double-wall carbon nanotubes: comparison with single- and triple-wall carbon nanotubes, and influence of annealing and electron irradiation , 2007 .

[63]  P. Bandaru Electrical properties and applications of carbon nanotube structures. , 2007, Journal of nanoscience and nanotechnology.

[64]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[65]  C. G. Zoski Handbook of Electrochemistry , 2006 .

[66]  Stephen K. Doorn,et al.  Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra , 2005, Nature materials.

[67]  A. Philipse,et al.  Atomic force microscopy and magnetic force microscopy study of model colloids. , 2002, Journal of colloid and interface science.

[68]  A. M. Rao,et al.  Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering , 1997, Nature.

[69]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[70]  F. Wilkinson Diffuse reflectance flash photolysis , 1986 .