Comparison of natural gas driven heat pumps and electrically driven heat pumps with conventional systems for building heating purposes

Abstract Electrically driven heat pumps achieve good efficiencies for space heating. If heat pumps are driven directly by a combustion engine instead of an electric motor, losses attributed to the production and transport of electricity are eliminated. Additionally, the use of the combustion engine's heat leads to a reduced temperature difference across the heat pump. This article presents annual efficiencies of these systems and compares internal combustion engine and electrically driven heat pumps in terms of primary energy consumption and CO 2 emissions. Because heat pump performance depends strongly on the heating circuit's flow temperature level, the comparison is performed for air-to-water and geothermal heat pump systems in two cases of maximum flow temperatures (40 °C and 60 °C). These temperature levels represent typical modern buildings with large heating surfaces and older buildings with high-temperature radiators, respectively. In addition to the different heat pump setups, conventional space heating systems are included in the comparison. The calculations show that natural gas-driven heat pumps achieve about the same efficiency and CO 2 emissions as electrically driven heat pumps powered with electricity from the most modern natural gas-fired combined cycle power plants. The efficiency of such systems is about twice that of conventional boiler technologies.