A Dynamic Clustering Approach to Data-Driven Assortment Personalization

We consider an online retailer facing heterogeneous customers with initially unknown product preferences. Customers are characterized by a diverse set of demographic and transactional attributes. T...

[1]  D. Simchi-Levi,et al.  A Statistical Learning Approach to Personalization in Revenue Management , 2015, Manag. Sci..

[2]  David B. Shmoys,et al.  Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint , 2010, Oper. Res..

[3]  Sunil Kumar,et al.  A Re-Solving Heuristic with Bounded Revenue Loss for Network Revenue Management with Customer Choice , 2012, Math. Oper. Res..

[4]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[5]  Hamid Nazerzadeh,et al.  Real-time optimization of personalized assortments , 2013, EC.

[6]  Wang Chi Cheung,et al.  Dynamic Pricing and Demand Learning with Limited Price Experimentation , 2017 .

[7]  Vashist Avadhanula,et al.  MNL-Bandit: A Dynamic Learning Approach to Assortment Selection , 2017, Oper. Res..

[8]  Lei Xie,et al.  Dynamic Assortment Customization with Limited Inventories , 2015, Manuf. Serv. Oper. Manag..

[9]  M. Fisher,et al.  Assortment Planning: Review of Literature and Industry Practice , 2008 .

[10]  D. Simchi-Levi,et al.  Online Network Revenue Management Using Thompson Sampling , 2017 .

[11]  Omar Besbes,et al.  Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms , 2009, Oper. Res..

[12]  Felipe Caro,et al.  Dynamic Assortment with Demand Learning for Seasonal Consumer Goods , 2007, Manag. Sci..

[13]  M. Harding,et al.  A Bayesian mixed logit-probit model for multinomial choice , 2008 .

[14]  Aurélien Garivier,et al.  On Bayesian Upper Confidence Bounds for Bandit Problems , 2012, AISTATS.

[15]  Aydin Alptekinoglu,et al.  Learning Consumer Tastes through Dynamic Assortments , 2012, Oper. Res..

[16]  V. Farias,et al.  Fast Demand Learning for Display Advertising Revenue Management , 2014 .

[17]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[18]  Marshall L. Fisher,et al.  A Demand Estimation Procedure for Retail Assortment Optimization with Results from Implementations , 2014, Manag. Sci..

[19]  Sébastien Bubeck,et al.  Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..

[20]  T. Ferguson BAYESIAN DENSITY ESTIMATION BY MIXTURES OF NORMAL DISTRIBUTIONS , 1983 .

[21]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 1985 .

[22]  Omar Besbes,et al.  Product Assortment and Price Competition Under Multinomial Logit Demand , 2014 .

[23]  Sumit Sarkar,et al.  The Role of the Management Sciences in Research on Personalization , 2003, Manag. Sci..

[24]  N. H. Beebe of Computational and Graphical Statistics , 2012 .

[25]  Katherine A. Heller,et al.  Bayesian hierarchical clustering , 2005, ICML.

[26]  H. Robbins Some aspects of the sequential design of experiments , 1952 .

[27]  David P. Williamson,et al.  Assortment optimization over time , 2015, Oper. Res. Lett..

[28]  Xi Chen,et al.  Dynamic Assortment Optimization with Changing Contextual Information , 2018, J. Mach. Learn. Res..

[29]  W. R. Thompson ON THE LIKELIHOOD THAT ONE UNKNOWN PROBABILITY EXCEEDS ANOTHER IN VIEW OF THE EVIDENCE OF TWO SAMPLES , 1933 .

[30]  Carl F. Mela,et al.  E-Customization , 2003 .

[31]  J. Michael Harrison,et al.  Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution , 2011, Manag. Sci..

[32]  J. Walrand,et al.  Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-Part II: Markovian rewards , 1987 .

[33]  Shipra Agrawal,et al.  Analysis of Thompson Sampling for the Multi-armed Bandit Problem , 2011, COLT.

[34]  Alan L. Montgomery,et al.  Prospects for Personalization on the Internet , 2008 .

[35]  Yogesh V. Joshi,et al.  Putting one-to-one marketing to work: Personalization, customization, and choice , 2008 .

[36]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[37]  Madeleine Udell,et al.  Dynamic Assortment Personalization in High Dimensions , 2016, Oper. Res..

[38]  Van-Anh Truong,et al.  Online Resource Allocation with Customer Choice , 2015, 1511.01837.

[39]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[40]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .